# Challenging management of Costello syndrome with severe Congenital Hyperinsulinaemic Hypoglycaemia

#### Güemes M<sup>1,2</sup>, Shah P<sup>1,2</sup>, Hinchey L<sup>2</sup>, Gilbert C<sup>2</sup>, Morgan K<sup>2</sup>, Silvera S<sup>2</sup>, Hussain K<sup>1,2</sup> Great Ormond Street NHS

1. GGM Programme, GEHD section, Institute of Child Health, University College London 2. Endocrinology Department, Great Ormond Street Hospital for Children, London

NHS Foundation Trust

Hospital for Children

#### BACKGROUND

Costello syndrome is a disorder of the Ras/MAPK pathway characterised by mental retardation, coarse facies, loose skin, cardiovascular abnormalities, skeletal abnormalities and predisposition to neoplasias. Endocrine deficiencies have been reported, including GH and cortisol, leading to hyoglycaemia in some cases. It has also been documented in association with Hyperinsulinaemic Hypoglycaemia (HI), being usually mild and medically-responsive. The exact mechanism that links Costello syndrome and HI is still unknown.

### **OBJECTIVE**

To describe the clinical characteristics, biochemical findings and challenging management of a case of Costello syndrome with severe HI.

#### METHODS



Review of the patient's medical records.

## CASE

## **Pregnancy:** polyhydramnios.



**Birth:** 40+5 weeks, NVD, BW 3.5kg (-0.45 SDS), good Apgar scores.

**Problems:** hypoglycaemia, feeding intolerance and tracheomalacia since day 1 of life. Subsequently found to have failure to thrive, biventricular hypertrophy with pulmonary stenosis and gastroesophageal reflux disease with possible abnormal gastric emptying, requiring gastrostomy feeds.

**Phenotype:** Weight and height 0.4<sup>th</sup> centile, macroglossia, low set ears, deep palmar and plantar creases, wide spaced nipples, soft systolic murmur upper left sternal edge, and abdominal distension (normal genitalia).

| INVESTIGATIONS       |         |                                                                 |      |      |      |      |      |      |      |      |      |      |      |      |                 |      |      |      |      |      |      |      |      |      |            |
|----------------------|---------|-----------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-----------------|------|------|------|------|------|------|------|------|------|------------|
| Initial hyposcreen   |         | Initial blood glucose profile (on 24h Neocate continuous feeds) |      |      |      |      |      |      |      |      |      |      |      |      |                 |      |      |      |      |      |      |      |      |      |            |
|                      | RESULTS | Time                                                            | 0800 | 0900 | 1000 | 1100 | 1200 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200            | 2300 | 2400 | 0100 | 0200 | 0300 | 0400 | 0500 | 0600 | 0700 | 0800       |
| BG (mmol/l)          | 2.9     | BG                                                              | 37   | 37   | 37   | 2 2  | 34   | 43   | 37   | 57   | 27   | 52   | 57   | 57   | 54              | 52   | 47   | 5.0  | 48   | 53   | 54   | 48   | ΔΔ   | 52   | <b>4</b> 1 |
| Lab glucose (mmol/l) | 2.4     | Mmol/l                                                          | 5.2  | 5.7  | 5.7  | 5.5  | 3.4  | т.Ј  | 5.2  | 5.7  | 2.1  | 5.2  | 5.7  | 5.7  | J. <del>1</del> | 5.2  | 7.7  | 5.0  | 7.0  | 5.5  | 5.4  | т.0  | 7.7  | 5.2  | 7.1        |
| Cortisol (nmol/l)    | 122     |                                                                 |      |      |      |      |      |      |      |      |      |      |      |      |                 |      |      |      |      |      |      |      |      |      |            |

| Insulin (mU/L)                          | 2.2    |  |  |  |  |  |
|-----------------------------------------|--------|--|--|--|--|--|
| C- peptide                              | 134    |  |  |  |  |  |
| GH (ug/l)                               | 5.3    |  |  |  |  |  |
| IGF-1 (ng/ml) [55-<br>327]              | <25    |  |  |  |  |  |
| IGFBP-3 (mg/l)<br>[0.7-3.6]             | 0.91   |  |  |  |  |  |
| Lactate (mmol/l)<br>0.7-2.1             | 0.7    |  |  |  |  |  |
| Ammonia (umol/L)<br>[<40]               | 23     |  |  |  |  |  |
| NEFA (mmol/L)                           | 0.42   |  |  |  |  |  |
| BHOB (mmol/L)                           | 0.13   |  |  |  |  |  |
| Acylcarnitine                           | Normal |  |  |  |  |  |
| PAA                                     | Normal |  |  |  |  |  |
| Glucagon 4pmol/l (<50)<br>ACTH 20.2ng/l |        |  |  |  |  |  |

Glucagon for HI diagnosis (1mg im): BM 2.5mmol/l  $\rightarrow$  4.6mmol/l

**OGTT and Protein load:** Did not trigger hypoglycaemia

**Standard synacthen test** 

| Time                        | 0h00m | 0h30m |
|-----------------------------|-------|-------|
| <b>Cortisol</b><br>(nmol/l) | 134   | 588   |

**MRI brain**: Normal pituitary gland

Given poor growth and undetectable IGF-1 concentrations, a Glucagon test for GH secretion (100mcg/kg im) was performed

| TIME (min) | GH (ug/l) | CORTISOL (nmol/l) | LAB GLUCOSE<br>(mmol/l) |  |  |  |
|------------|-----------|-------------------|-------------------------|--|--|--|
| -30        | 7.3       | 97                | 4.6                     |  |  |  |
| 0          | 3.6       | 210               | 4.0                     |  |  |  |
| +30        | 1.9       | _                 | -                       |  |  |  |
| +60        | 1.6       | _                 | 3.6                     |  |  |  |
| +90        | 2.8       | _                 | 2.8                     |  |  |  |
| +120       | 2.7       | 225               | 3.3                     |  |  |  |
| +150       | 2.4       | 177               | 3.4                     |  |  |  |
| +180       | 1.5       | 174               | 4.2                     |  |  |  |

**Genetics**: Negative for BWS, *PTPN11*, *ABCC8*, *KCNJ11*, *HNF4A* genes. De novo mutation in *HRAS* (c.466T>C), not previously described.

#### MANAGEMENT

Diazoxide (10mg/kg/day) ± octreotide (38mcg/kg/day) ± sirolimus (1.6mg/m2/day) + 24h continuous Neocate LCP 16% feeds  $\rightarrow$  NO glycaemic control



95% laparoscopic pancreatectomy (Histology: No abnormal pancreatic tissue) Hypoglycaemia persisted  $\rightarrow$  octreotide injections + continuous enteral feeds

Tachyphylaxis to increased doses of octreotide. Ongoing hypoglycaemia



To avoid further surgery and potentially increased insulin sensitivity  $\rightarrow$  Prednisolone (= 4mg/m2/day hydrocortisone) + continuous feeds Neocate 16% (116ml/kg/day) + Vitajoule 10% (8.2mg/kg/min of glucose)  $\rightarrow$  satisfactory glycaemic control

#### CONCLUSIONS

Costello can present with severe medically and surgically unresponsive HI. In view of potentially increased insulin sensitivity in some of these patients the use of steroids might help avoid further surgery.

\*Image from: http://personalizedmedicine.partners.org/laboratory-for-molecular-medicine/tests/rasopathies-noonan/expanded-rasopathy-panel.aspx

