

55th Annual ESPE Meeting ESPE 2016 10-12 SEPTEMBER ESPE 2016 PARIS, FRANCE

P1-5 Whole exome sequencing in patients with Primary Generalized Glucocorticoid Resistance, who did not have mutations in the *NR3C1* gene

Amalia Sertedaki^{1,2}, Alexandros Polyzos³, Nicolas C. Nicolaides^{1,2}, Dimitris Thanos³, Evangelia Charmandari^{1,2}

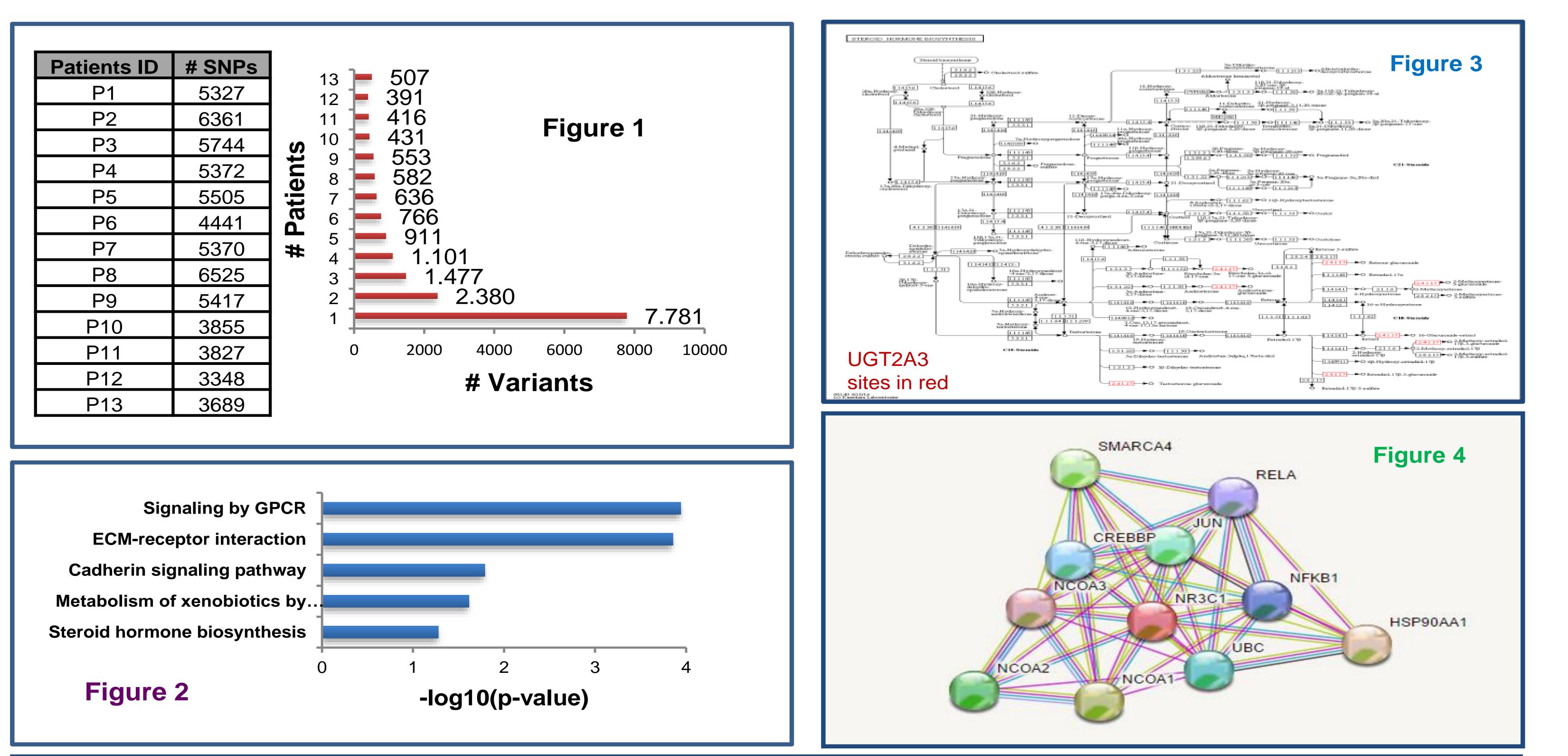
¹Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, 11527, Greece; ²Division of Endocrinology and Metabolism, & ³Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527, Greece

The authors have no financial relationship(s) to disclose relevant to this poster presentation

Background: Primary Generalized Glucocorticoid Resistance (PGGR) is a rare, familial or sporadic

Objective and Hypotheses: Using whole exome sequencing, we investigated whether other genes are

condition, characterized by generalized, partial tissue insensitivity to glucocorticoids. The molecular basis of this condition has been ascribed to mutations in the *NR3C1* (human glucocorticoid receptor, hGR) gene, which impair the molecular mechanisms of hGR action and decrease tissue sensitivity to glucocorticoids. However, a considerable number of patients with PGGR do not have mutations in the *NR3C1* gene.


implicated in the pathogenesis of PGGR.

Patients and Methods: Eleven adult patients (age range: 18-48 years; 6 males, 5 females) with PGGR, who did not have mutations in the *NR3C1* following Sanger sequencing, and two patients with PGGR harbouring two mutations (one missense mutation and a 5 bp deletion) of the *NR3C1* gene (positive controls) underwent whole exome sequencing on an Ion Proton platform (ThermoFisher Scientific USA).

Results: Each exome sequence revealed the presence of approximately 55000 variants. Using a cut off value of 100 reads/variant, a total number of **507** non synonymous and frameshift mutations were detected in all patients (**Fig.1**). These mutations corresponded to **390** genes involved in **5 different pathways** (**Fig.2**), one of which was that of steroid hormone biosynthesis (*CYP1B1, CYP3A7, AKR1C4, UGT2A3; Fig.3*). The mutations detected in these four genes were shown to be known polymorphisms and were present in all 13 samples. One mutation of the *UGT2A3* gene was detected in only one patient, the **c.1480T>G p.Phe494Val** and was reported as damaging, possibly damaging and polymorphism by three *in silico* tools.

Nineteen of the 390 genes were found to be regulated directly by *TP53* possibly indicating the presence of a cascade. One mutation of the *GP6* gene present in all patients was not annotated. The presence of mutations in the genes *HSP90AA1, NCOA1, SMARCA4, NCOA2, JUN, UBC, CREBBP, NFKB1, RELA* and *NCOA3* (functional partners of the *NR3C1* after searching the STRING database; **Fig.4**) was examined and no pathogenic variants were detected.

No *NR3C1* mutation was detected in any of the patients, whereas the mutations previously identified by Sanger sequencing were also detected by exome sequencing.

Conclusions: Whole exome sequencing may allow us to expand the spectrum of genes associated with PGGR. Further bioinformatic analysis is required to establish pathogenic variants in genes related to this condition.

