universitäts kinderklinik **bonn**

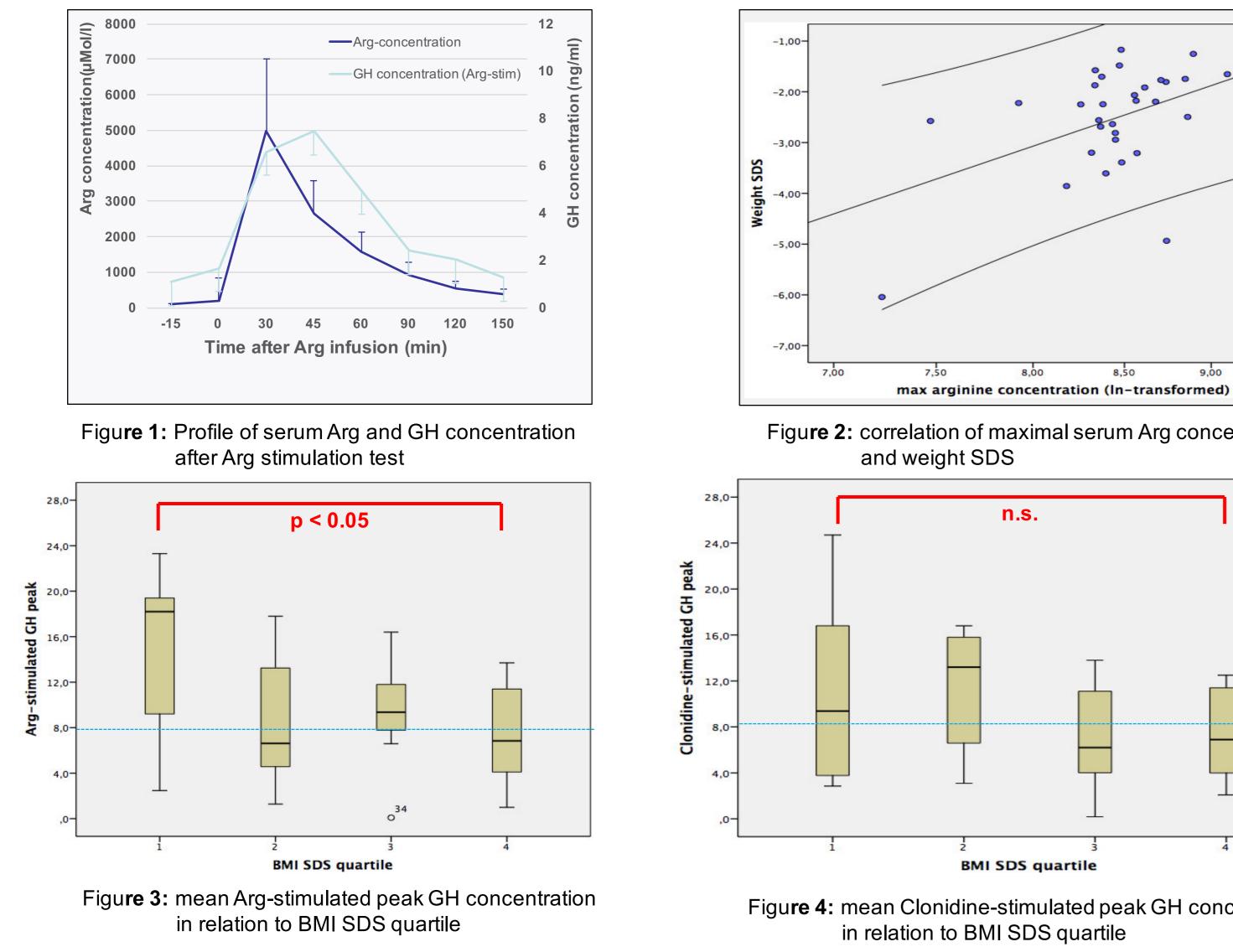
Diagnosing GH deficiency in children by arginine HCI infusion test: relationship between auxological characteristics, arginine plasma profile and arginine-stimulated GH release

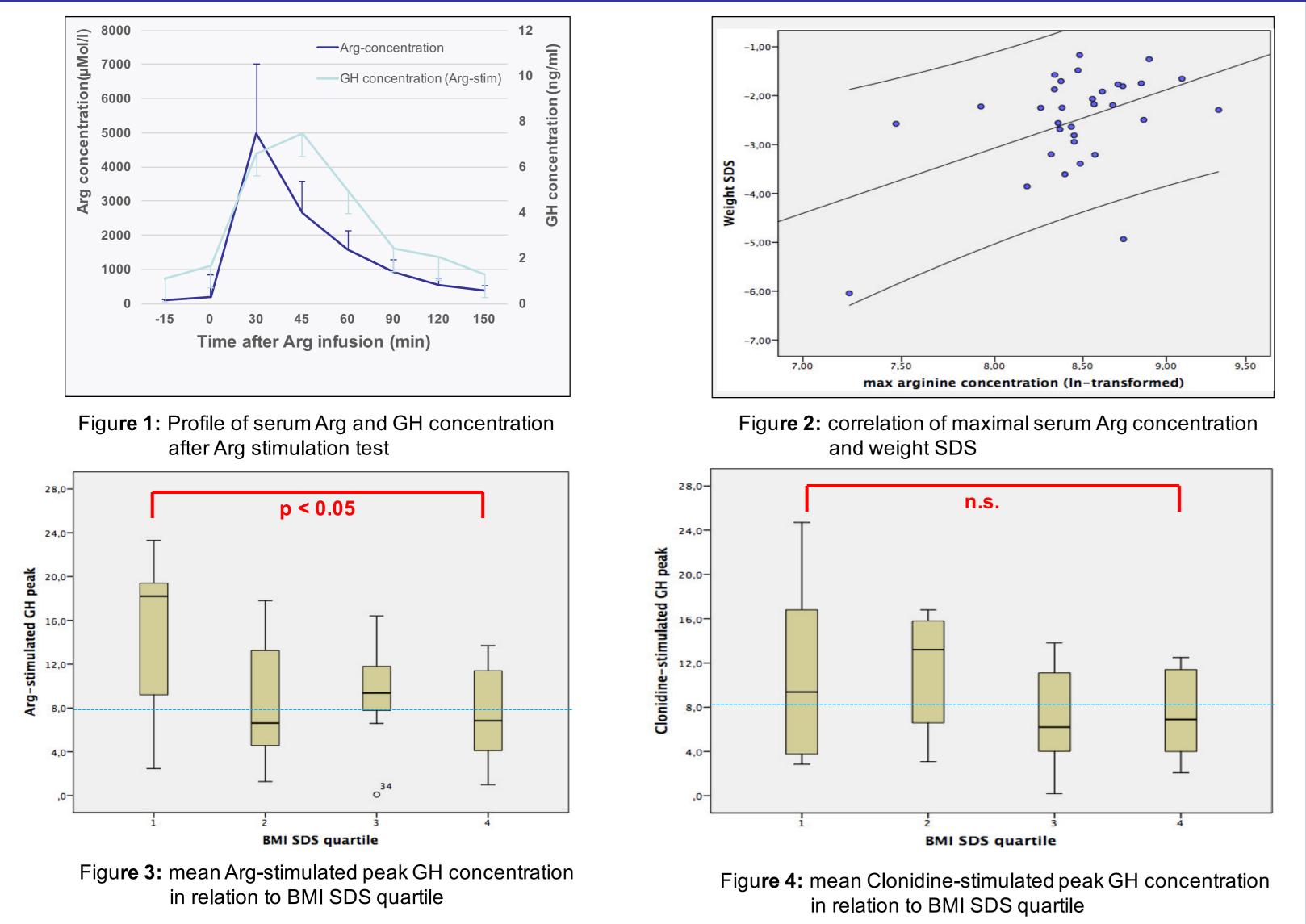
Joachim Woelfle, Felix Schreiner, Doris Schiffer-Ngampolo and Bettina Gohlke Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Germany

BACKGROUND and OBJECTIVES	METHODS
The diagnosis of isolated growth hormone (GH) deficiency is challenging, in particular due to the lack of a gold standard and the poor reproducibility of GH stimulation tests (1).	Retrospective analysis, including 35 prepubertal short-statured children (24 male; age 10.1 \pm 3.5
Arginine (Arg) HCI infusion is commonly used in the diagnostic workup of paediatric GH deficiency. Arginine infusion has been demonstrated to alter somatostatin tonus, whereas clonidine seems to exert its GH-releasing effect through increasing GHRH-stimulated GH	years; height SDS -3.1 \pm 0.6, weight SDS -2.5 \pm 1.0; BMI SDS -0.81 \pm 0.2, preceding HV < P25). In prepubertal girls \geq 8 years and prepubertal boys \geq

release (2,3).

In adults a BMI-adjusted cut-off level in the diagnostic workup of GHD has been suggested for the Arg-GHRH test (4). In children however, the influence of body mass index (BMI) on systemic Arg concentrations and Arg-stimulated GH secretion following a weight-based Arg infusion protocol has not been systematically investigated.


We speculated that auxological parameters not only are associated with differences regarding susceptibility to GH-releasing stimuli, but that by using weight-based test protocols differences in body composition might also influence circulating Arg concentrations. Thus the aim of this study was to analyse whether auxological parameters modulate the Arg plasma concentration profile and associated GH secretion in short-statured prepubertal children undergoing Arg stimulation testing.


10 years, GH stimulation testing was performed after sex steroid priming.

Arginine plasma concentration profile, following intravenous infusion of 0.5 g/kg Arg, was measured at time points -15, 0, 30, 45, 60, 90, 120 and 150 minutes, using a lithium high-resolution column (Biochrom 30 amino acid analyser).

hGH concentration was measured at the same timepoints as described for Arg concentration by a highly sensitive ELISA (Mediagnost, Germany).

RESULTS

Peak Arg plasma concentrations (4980±364 µMol/l) were observed 30 minutes after start of arginine infusion and preceded peak GH concentration (7.5±1.0 ng/ml) at 45 minutes (figure 1).

Peak Arg plasma concentration correlated both with weight (r=0.464; p<0.01) and height SDS (r=0.407; p<0.05) (see figure 2). We found no direct relation between Arg plasma concentration and Argstimulated GH secretion. Furthermore, we found no sex-dependent differences in the Arg plasma concentration profile or Arg-stimulated GH secretion. Peak GH after Arg-stimulation did not correlate with peak GH after clonidine stimulation.

Whereas Arg-stimulated peak GH was significantly higher in the lowest versus the highest BMI quartile, differences in Clonidinestimulated GH peak did not reach statistical significance (see figure 3) and 4).

In linear regression analyses, weight SDS contributed significantly to the variance of peak Arg concentration ($r^2=0.13$). Furthermore, BMI SDS contributed significantly to the observed variance in Argstimulated peak GH concentration ($r^2=0.14$).

SUMMARY and CONCLUSIONS

References

Food intake and energy homeostasis modulate pituitary somatotroph function; in part this seems to be mediated through altering GHRH and somatostatin expression (5). Eating behaviour and associated changes in body composition are therefore likely to interfere with GH stimulation testing in the diagnostic workup of GH deficiency.

1) Stanley T (2012) Diagnosis of Growth Hormone Deficiency in Childhood. Curr Opin Endocrinol Diabetes Obes 19(1):47–52

In this retrospective study, BMI, weight and height SDS were associated with the arginine plasma profile and the stimulated GH response to arginine stimulation testing. We thus suggest that - as in the diagnostic workup of adults with suspected GHD using Arg+GHRH stimulation testing - auxiological parameters such as BMI and weight need further consideration in order to avoid uncontrolled confounding in the interpretation of GH stimulation test results. Preferably this could be achieved by establishing BMI- and/or weight-adjusted reference values in healthy probands.

2) Alba-Roth J, Müller OA, Schopohl J, von Werder K (1988) Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab 67(6):1186-9.

3) Hanew K, Utsumi A (2002) The role of endogenous GHRH in arginine-, insulin-, clonidine- and I-dopa-induced GH release in normal subjects. Eur J Endocrinol 146(2):197-202

4) Ho KK & on behalf of the 2007 GH Deficiency Consensus Workshop Participants (2007) Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. European Journal of Endocrinology 157:695–700

5) Kappeler L, Zizzari P, Grouselle D, Epelbaum J, Bluet-Pajot MT (2004) Plasma and hypothalamic peptide-hormone levels regulating somatotroph function and energy balance in fed and fasted states: a comparative study in four strains of rats. J Neuroendocrinol 16(12):980-8

