Neonatal diabetes and congenital hypothyroidism, a rare condition: report of 2 cases with different genetic causes

Carolina Mendoza^a, Carolina Garfias^a, Cristian Seiltgens^a, Sarah Flanagan^b, Sian Ellard^b, Francisca Ugarte^c, Ricardo Silva^d, Isabel Hodgson^a, Hernan Garcia^a Departamento de Pediatria, Unidad Endocrinologia pediatrica, Pontificia Universidad Catolica De Chile, Santiago, Chile; ^b Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; ^c Clínica Universidad De Los Andes, Santiago, Chile; ^d Clínica Santa María, Santiago, Chile

Nothing to disclose

INTRODUCTION

- •Neonatal diabetes (ND) is a rare monogenic form of diabetes characterized by the onset of hyperglycemia within the first six months of life. ND can be transient (TND) or permanent (PND).
- •The most frequent causes are mutations in *KCNJ11, ABCC8* and insulin gene. Up to 40% of patients with ND remain without a genetic diagnosis.
- •A specific molecular diagnosis has important clinical consequences for appropriate treatment, associated conditions, prognosis and genetic counseling.

METHODS

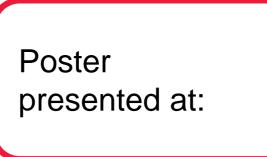
- •We describe two clinical cases of neonatal diabetes and congenital hypothyroidism.
- •Clinical characteristics in table 1, laboratory and imaging tests in table 2.

Table 1. Clinical characteristics			
	Case 1	Case 2	
Gestation, wk	35	38	
Birth weight, g	1550	2300	
Birth length,cm	39.5	45	
Birth weight, centile	< 3rd	< 3rd	
Hyperglycemia	Second day of life	20th day of life	
Family history	Unremarkable	Unremarkable	
Associated conditions	Congenital hypothyroidism Cholestasic jaundice Chronic diarrhea Small interauricular communication	Congenital hypothyroidism Tetralogy of Fallot	

Table 2. Laboratory and imaging tests			
	Case 1	Case 2	
TSH (mIU/mI) Reference 1.7-9.1	1132	35,6	
C- peptide (ng/ml) Reference 0.8-4.2	0.1	<0,5	
Thyroyd ultrasound	Severe thyroid hypoplasia	Normal	
Abdominal ultrasound	Normal	Pancreatic agenesis	

RESULTS

- •Molecular tests were performed at Molecular Genetics Laboratory, University of Exeter Medical School, Exeter, UK.
- •Mutations in KCNJ11, ABCC8 and INS genes were excluded.
- •Sequence analysis identified a novel *de novo* heterozygous *STAT3* missense mutation p.Gln643 Arg (c.1928A>G) in case 1 and a heterozygous GATA6 mutation p.Cys447Arg (c.1339C>T) in case 2.
- •Both cases were managed with basal bolus-insulin therapy.


CONCLUSIONS

- We present two cases of neonatal diabetes associated with congenital hypothyroidism.
- GATA6 mutation is a known cause of permanent ND due to pancreatic agenesis associated with congenital hypothyroidism.
- Mutations in *STAT3* have been recently associated with early-onset autoimmune disease including enteropathy, primary hypothyroidism, fibrotic lung disease, juvenile arthritis and ND.
- A specific molecular diagnosis has important clinical consequences as it may influence diabetes treatment and prognosis.

REFERENCES

- Rubio-Cabezas O, Ellard S. Diabetes mellitus in neonates and infants: genetic heterogeneity, clinical approach to diagnosis, and therapeutic options. Horm Res Paediatr. 2013;80:137–146.
- De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, International NDMC, Hattersley AT, Ellard S.. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes 2013; 62:993-7
- Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Lango Allen H, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet (2014) 46:812–4
- De Franco E, Ellard S. Genome, Exome, and Targeted Next-Generation Sequencing in Neonatal Diabetes.
 Pediatr Clin North Am. 2015 Aug;62(4):1037-53.

