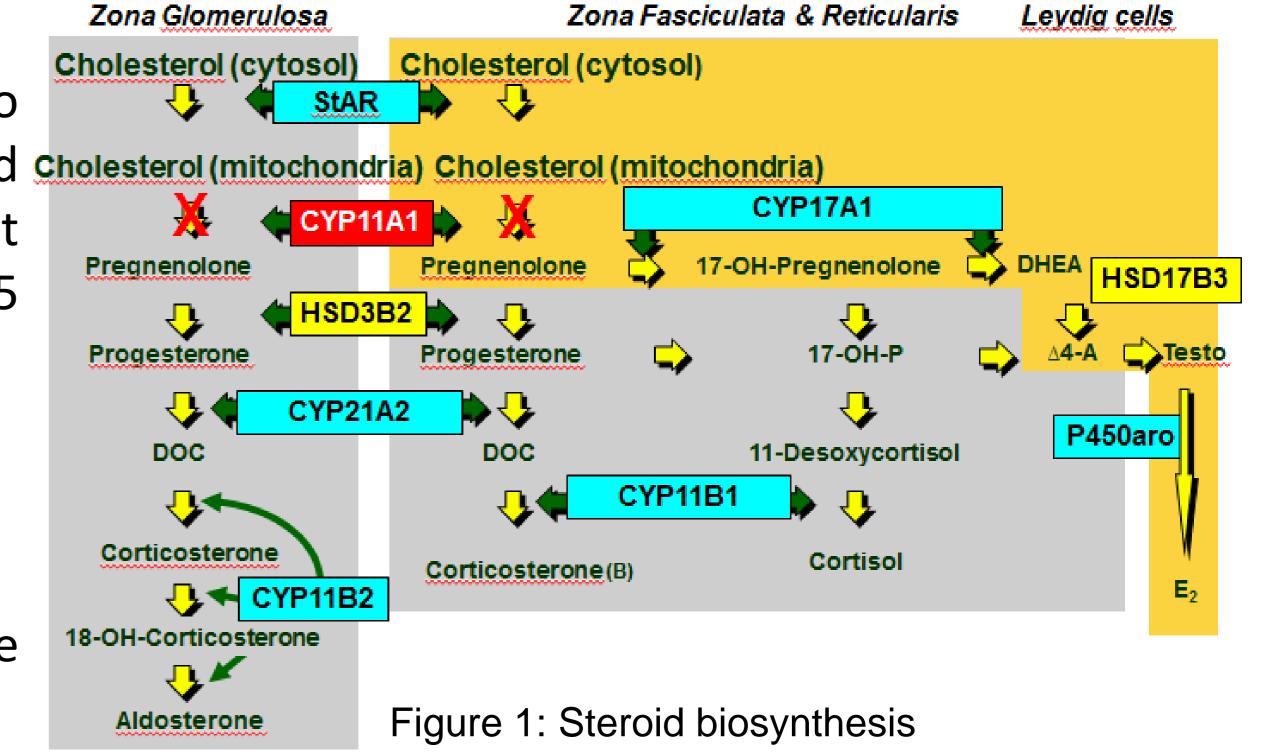
Novel CYP11A1 mutations in 15 patients (13 families) with variable clinical presentations


Claire Goursaud¹, Florence Roucher-Boulez¹, Delphine Mallet-Motak¹, Raja Brauner², Claire-Lise Gay³, Ane Mercedes Garcia⁴, Anne Lienhardt-Roussie⁵, Farida Jennane⁶, Maryam Razzaghy Azar⁷, Yves Morel¹

¹Hospices Civils de Lyon, Laboratoire d'Endocrinologie Moléculaire et Maladies Rares, Lyon-Bron, France; ²Fondation ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France; ³CHU Hospices Civils de Lyon, Service d'Endocrinologie Pédiatrique, Lyon-Bron, France; ⁴Centro medico Orinoco, Endocrinologo Pediatra, Ciudad Guyana, Bolivar, Venezuela; ⁵Hôpital de la mère et de l'enfant, Département de pédiatrie médicale, Limoges, France; ⁶CHU Ibn Rochd, Hôpital d'enfants, unité d'Endocrinologie/Diabétologie et Gynécologie de l'Enfant et de l'adolescent, Casablanca, Morocco; ⁷Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute and Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran

BACKGROUND

The side chain cleavage enzyme (CYP11A1) catalyzes the conversion of cholesterol to pregnenolone, the first rate-limiting step of steroidogenesis. CYP11A1 mutations are associated cholesterol (mitochondria) Cholesterol (mitochondria) with primary adrenal insufficiency (PAI) and, in 46,XY patients, Disorders of Sex Development (DSD). 35 patients (27 families) have been previously reported in the literature including 15 intermediate forms documented:

- Six 46,XY patients with normal male external genitalia, including 5 homozygous for p.R451W
- Five 46,XY patients with partial DSD (micropenis, hypospadias...) Four 46,XX patients with late onset of PAI (\geq 18 months)

lospices Civils de Lyon

We report 15 patients (13 families) with 15 CYP11A1 mutations (10 new ones) and variable clinical presentations.

METHODS

- Sanger sequencing: selective amplification by PCR followed by conventional dideoxy sequencing of exons and the exon-intron boundaries on a ABI-3730XL and compared to the human genome (GRCh37/hg19) using SeqScape[®] software v3 (Life Technologies, CA, USA)
- <u>Massive Parallel Sequencing (MPS)</u>: Design Ampliseq (exons +/- 50 pb). Library preparation : Ion AmpliSeqTM Library Kit. Séquencing: Ion Torrent Proton[™]. Informatic analysis: Torrent Suite[™] software v5.1
- 57 genes analyzed including AAAS, AIRE, Cited2, CYP11A1, MC2R, MCM4, MRAP, NNT, NROB1, NR5A1, PBX1, PRDX3, StAR, TXNRD2
- In silico studies : predictive software, sequences alignment (between species and steroidogenesis CYP) using Clustal omega and Genedoc, molecular modelisation using Swiss-PdbViewver

RESULTS								
Diagnosis based on:		c.DNA	protein	Activity	Karyotype	diagnosis of PAI	DSD	circumstances of diagnosis
 SW (10 patients): 5 patients 46,XY (3, 4, 6a, 12, 13) with complete female phenotype 	1	c.806C>T/c.806C>T	p.A269V/p.A269V	11%	46,XY	3 months	buried penis, cryptorchidism	sister's history
homozygous or compound heterozygous for 7 mutations: p.G94D,	2	c.1351C>T/c.1351C>T	p.R451W/p.R451W	32%	46,XY	13 months	None	SW
p.P104L, p.A277S, p.D329G, p.R465W, p.L170Vfs*30 and p.R120X	3	c.1393C>T/c.1393C>T	p.R465W/p.R465W	?	46,XY	9 days	female external genitalia	SW
	4	c.281G>A/c.281G>A	p.G94D/p.G94D	?	46,XY	15 months	female external genitalia	SW
 1 patient 46,XY (2) without DSD homozygous for a mutation reported in 	5	c.359G>A/c.940G>A	p.R120Q/p.E314K	?/?	46,XX	3 years and 8 months	NA	SW

- similar cases: p. R451W
- 2 patients 46,XX (8, 11) with PAI diagnosed in the first year of life (one day and 7 months) compound heterozygous for p.G138R/p.L170Vfs*30 and p.R396G/p.R465Q
- 2 patients 46,XX (5, 9) with late onset of PAI (> 3 years) with p.R120Q, p.E314K, p.R465W mutations
- DSD: 2 patients 46,XY (7a, 10) with p.E314K, p.R465W and p.G454D **mutations** (For the patient 7a, US failed to reveal uterus)
- Familial history (3 patients)
- 2 patients 46,XY with DSD (1, 7b) carrying p.A269V, p.E314K and p.R465W mutations
- 1 patient 46,XY DSD with complete female phenotype (6b) compound heterozygous for p.R120X and p.A277S

6a	c.358C>T/c.829G>T	p.R120X/p.A277S	?/?	46,XY	2 years and 6 months	female external genitalia	SW
6b	c.358C>T/c.829G>T	p.R120X/p.A277S	?/?	46,XY	None (neonatal diagnosis due to familial history)	female external genitalia	sister's history
7a	c.940G>A/c.1393C>T	p.E314K/p.R465W	?/?	46,XY	3 years	female external genitalia	DSD
7b	c.940G>A/c.1393C>T	p.E314K/p.R465W	?/?	46,XY	None	Hypospadias	sister's history
8	c.412G>A / c.508_509delCT	p.G138R/ p.L170Vfs*30	?/?	46,XX	1 day	NA	SW
9	c.940G>A/c.1393C>T	p.E314K/p.R465W	?/?	46,XX	4 years	NA	SW
10	c.1361G>A/c.1361G>A	p.G454D/p.G454D	?	46,XY	12 days*	micropenis, hypospadias, cryptorchidism	DSD
11	c.1186A>G/c.1394G>A	p.R396G/p.R465Q	?/?	46,XX	7 months	NA	SW
12	c.508_509delCT/ c.311C>T	p.L170Vfs*30/ p.P104L	?/?	46,XY	10 months	female external genitalia	SW
13	c.986A>G/c.986A>G	p.D329G/p.D329G	?	46,XY	3 months	female external genitalia	SW

NA: not applicable; SW: Salt wasting * PAI detected by biological salt loss following the exploration of DSD

Nucleotide change	Protein change	Grantham	AA Conservation				P	redictive sof	tware		Allele count		
			Steroido- genesis CYP	Species	Protein consequence	Location	SIFT	Polyphen-2	Mutation Taster	dbSNP ID	ESP	ExAC	Family number
c.281G>A	p.G94D	94	-	+++		β1 strand	d	dc	pb	NA	NA	NA	4
c.311C>T	p.P104L	98	-	+++		B helix	d	dc	pb	NA	NA	NA	12
c.359G>A	R120Q	43	-	+++	Missense mutation at an AA involved in heme binding and in recognition substrat region	B-B' loop	d	dc	pb	NA	NA	NA	5
c.412G>A	p.G138R	125	+	+++		B'-C loop	d	dc	pb	NA	NA	NA	8
c.829G>T	p.A277S	99	-	+++	exon 4 skipping	G helix	d	dc	pb	NA	NA	NA	6
c.940G>A	p.E314K	56	-	+	Missense mutation in I helix (helix involved in heme binding)I helixtbpbrs616137/12949 29		294/121388	7-9					
c.986A>G	p.D329G	94	+	+++		I helix	d	dc	pb	rs748120824	NA	1/121218	13
c.1186A>G	p.R396G	125	+	+++	Missense mutation at an AA involved in heme binding and in recognition substrat region	β1-4 strand	d	dc	pb	NA	NA	NA	11
c.1361G>A	p.G454D	94	-	+++		K"-Lloop	d	dc	pb	rs773652136	NA	1/121410	10
c.1393C>T	p.R465W	101	+	+++	Missense mutation at an AA involved in recognition of Adx	L helix	d	dc	pb	rs141235847	1/12989	2/121412	3-7
c.1394G>A	p.R465Q	43	+	+++	Missense mutation at an AA involved in recognition of Adx	L helix	d	dc	pb	NA	NA	NA	11

-Table 1:Description of patients with CYP11A1 mutations

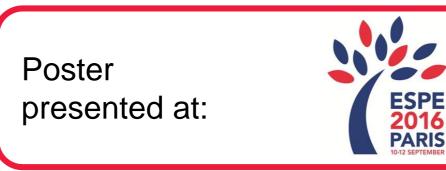
Table 2: In silico studies for missense mutations (except p.A269V and p.R451W already studied)

d: deleterious; dc: disease causing; pb: probably damaging; NA: not applicable

Mutations that seem to be less pathogen

Mutations that seem to be severe

CONCLUSION


The incidence of CYP11A1 mutations (33%) is high in our cohort of patients with first step of steroidogenesis deficiency (STAR and CYP11A1 gene). Diagnosis is based on SW in approximately 67% of cases. For some mutations, in silico studies seem to predict good genotype-phenotype correlation. Our patient without DSD is homozygous for p.R451W, mutation found in 5 patients 46,XY with the same phenotype. Intermediate forms are at risk to be misdiagnosed because the phenotype overlaps with other causes of PAI. This emphasizes the utility of MPS allowing the study of many causative genes simultaneously. Further studies should be done to explore these dissociated forms. 55th Annual ESPE Meeting, September 2016, Paris, France

6--P1 РЕ Adrenal Claire Goursaud C. Goursaud et al.

With the support of the « Association des Internes et des Anciens Internes en Pharmacie des Hôpitaux de Lyon »

