The Influences of Circulating Leptin, Kisspeptin, and Neurokinin B Levels to Precocious Puberty in Obese Girls

Min Jae Kang¹, Eun Young Kim², Yeon Joung Oh¹, Joon Woo Baek², Seung Yang¹, and Il Tae Hwang¹

¹Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea

²Department of Pediatrics, Chosun Univertsity College of Medicine, Gwangju, Korea

INTRODUCTION

Candidate markers of pubertal onset

- **Leptin**: a major role in the metabolic gating of pubertal maturation
- Kisspeptin: an essential gatekeeper of puberty
- Neurokinin B (NKB): coexpressed with kisspeptin in the arcuate nucleus and synchronizes the pulsatile secretion of kisspeptin.
- Metabolic status has a clear impact on the timing of puberty and leptin, kisspeptin, and NKB are influenced by energy balance.

The aim of this study

- To investigate the relationships of circulating leptin, kisspeptin, and NKB levels with precocious puberty in overweight/obese girls
- To evaluate the usefulness of these serum markers in the initiation of puberty.

SUBJECTS & METHODS

- The precocious puberty (PP) groups
 - 6 \leq age < 9 years
 - Girls who presented with the complaint of early breast development
 - Confirmed with GnRH stimulation test (peak LH \geq 5 mIU/mL) and bone age advancement (BA-CA \geq 1 year)
- The control group
 - $-6 \le age < 9 \text{ years}$
 - Consisted of healthy prepubertal girls
- Classification according to BMI z-score
 - Normal weight (5 percentile ≤ BMI z-score < 85 percentile)
 - Overweight (85 percentile ≤ BMI z-score < 95 percentile)
 - Obese (95 percentile ≤ BMI z-score)
- Definition of the groups
 - Gr 0: control_normal weight, n=38
 - Gr 1: PP_normal weight, n=85
 - Gr 2: PP_overweight/obese, n=54
- Chart reviews
 - Bone age: by Greulich and Pyle
 - Serum levels of IGF-1, IGFBP-3, basal LH/FSH/estradiol, peak LH/FSH (GnRH stimulation test)
- Biochemical Analysis
 - Leptin: ELISA kit (LDN Labor Diagnostika Nord GmbH & Co.)
 - Kisspeptin: EIA kit (Phoenix Pharmaceuticals, Inc.)
 - NKB: EIA kit (Peninsula Laboratories International, Inc.)
- Statistics
 - PASW Statistics 18.0 for Windows
 - Medcalc 15.8

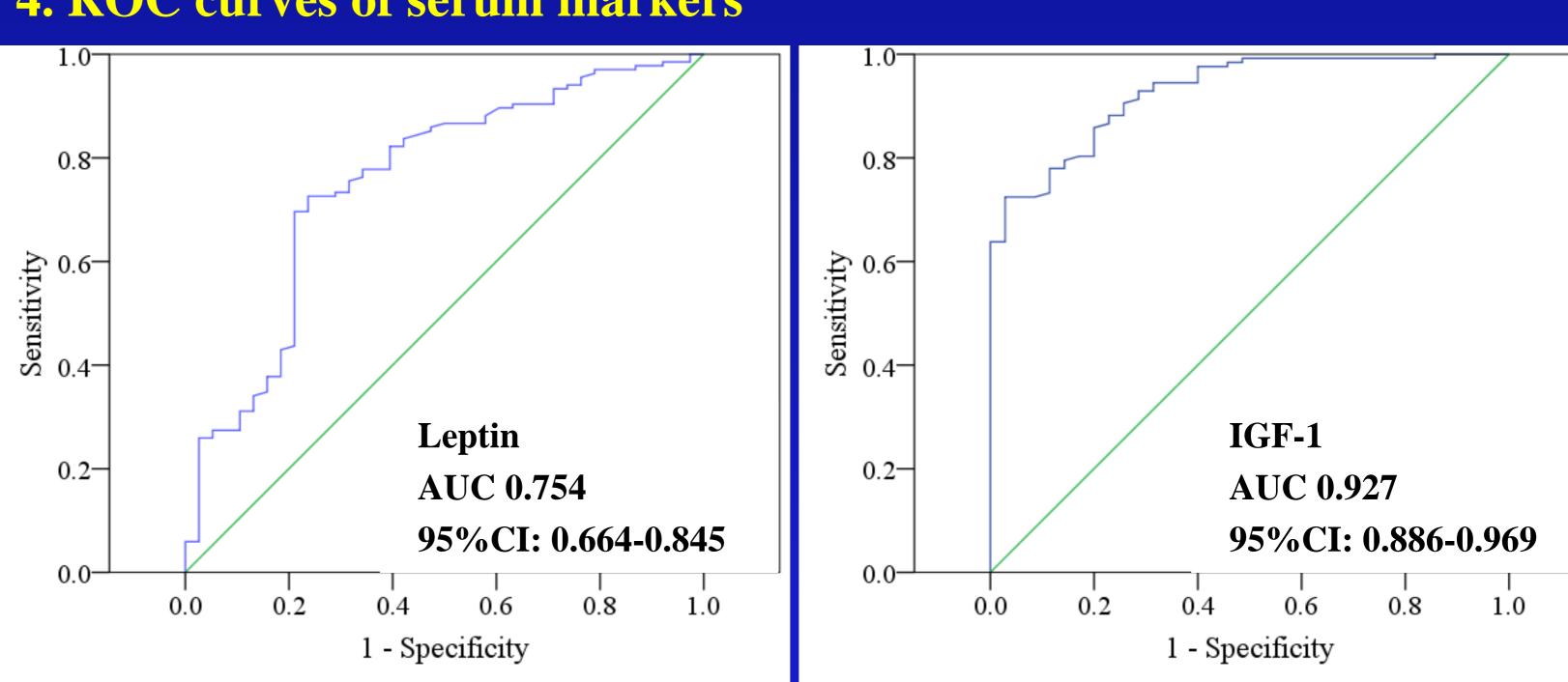
RESULTS

1. Clinical characteristics of subjects

	Gr 0	Gr 1	Gr 2	P-value*
Age (years) ¹	8.1 (7.3~8.6)	8.6 (8.2~8.9)	8.7 (8.3~8.9)	< 0.001
Bone age (years) ¹	7.0 (6.9~7.9)	10.5 (10.0~11.0)	10.5 (10.0~11.0)	< 0.001
BA-CA (years) ¹	-0.7 (-1.3~0.3)	1.8 (1.5~2.3)	2.0 (1.4~2.6)	< 0.001
BMI z-score ^{1,2}	-0.20 (-0.98~0.49)	0.28 (-0.24~0.76)	1.41 (1.2~1.72)	< 0.001
IGF-1 (ng/mL) ¹	157 (126~211)	296 (246~355)	320 (247~374)	< 0.001

Data are expressed as median and interquartile ranges.

- By Kruskall-Wallis test
- Gr 0 vs. Gr 1, by Mann-Whitney U test
- ² Gr 1 vs. Gr 2, by Mann-Whitney U test


2. GnRH stimulation test in PP subjects

	G r 0	Gr 1	Gr 2	P-value ²
Basal LH (mIU/mL)	0.6 (0.4~0.7)	0.8 (0.5~1.7)	0.7 (0.3~1.6)	0.364
Basal FSH (mIU/mL) ¹	1.4 (0.5~2.7)	2.5 (1.8~3.8)	2.6 (1.9~4.2)	0.617
Basal estradiol (pg/mL) ¹	0.5 (0.1~3.6)	6.3 (0.1~11.7)	6.6 (2.9~10.7)	0.450
Peak LH (mIU/mL)	Not done	7.9 (6.5~13.8)	10.9 (6.5~16.5)	0.257
Peak FSH (mIU/mL)	Not done	15.4 (11.9~18.5)	15.8 (12.8~18.9)	0.470

3. Serum levels of biochemical markers

	Gr 0	Gr 1	Gr 2	P-value*
Leptin (ng/mL) ^{1,2}	2.2 (1.6~3.0)	3.8 (2.6~4.7)	4.8 (3.2~8.0)	< 0.001
Kisspeptin (ng/mL) ²	0.57 (0.51~0.69)	0.57 (0.48~0.65)	0.64 (0.52~0.72)	0.096
NKB (pg/mL)	62.5 (51.3~74.3)	57.5 (39.0~71.3)	62.3 (50.8~73.1)	0.182

4. ROC curves of serum markers

5. Prediction of PP by serum markers

	Odds ratio	95% C.I.	P-value
Leptin	1.398	0.794-2.461	0.245
IGF-1	1.035	1.009-1.061	0.007
Basal FSH	1.364	0.903-2.060	0.141

CONCLUSIONS

- Higher level of serum leptin in overweight/obese girls with PP compared to normal controls confirmed the role in the regulation of puberty.
- Yet, although it is clear that the effects of leptin on pubertal onset are positive, the commercialization in clinical practice as a diagnostic marker for PP compared to other established hormones might be difficult.
- Aside from their serum levels, autocrine and paracrine interactions of kisspeptin and NKB may play a more important role in the true activation of hypothalamic-pituitary-gonadal axis.

REFERENCES

DOI: 10.3252/pso.eu.55ESPE.2016

- Sanchez-Garrido MA, Tena-Sempere M. Metabolic control of puberty: roles of leptin and kisspeptins. Hormones and behavior. 2013;64(2):187-94.
- Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nature genetics. 2009;41(3):354-8.
 - Rhie Y, Lee K, Eun S, Choi B, Chae H, Kwon A, et al. Serum kisspeptin levels in Korean girls with central precocious puberty. J Korean Med Sci. 2011;26(7):5.

