Diagnosis of polycystic ovary syndrome (PCOS) in adolescents using MRI

¹M. Fondin, MD, ^{4,2}A. Rachas, MD, ¹V. Huynh, MD, ¹S. Franchi Abella, MD, PhD, ²JP. Teglas, MD, ³L. Duranteau, MD, ^{4,1}C. Adamsbaum, MD. ¹Pediatric Radiology, ²Epidemiology and Public Health and ³Adolescent Medicine Departments, AP-HP, Bicêtre Hospital; ⁴Paris Sud University, Faculty of Medicine, France.

Background

Polycystic ovary syndrome (PCOS) is the most common ovarian dysfunction, with a prevalence of 6% to 15% of women (1).

Early diagnosis is required to inform patients and start prevention against potential complications – particularly infertility.

Diagnosis	in adults:	: Rotterdar	n 2003 c	riteria (2

2 out of 3

And exclusion of other aetiologies (congenital adrenal hyperplasia, androgen-

2) Clinical and/or biochemical signs of hyperandrogenism

Ovarian volume > 10 cm³

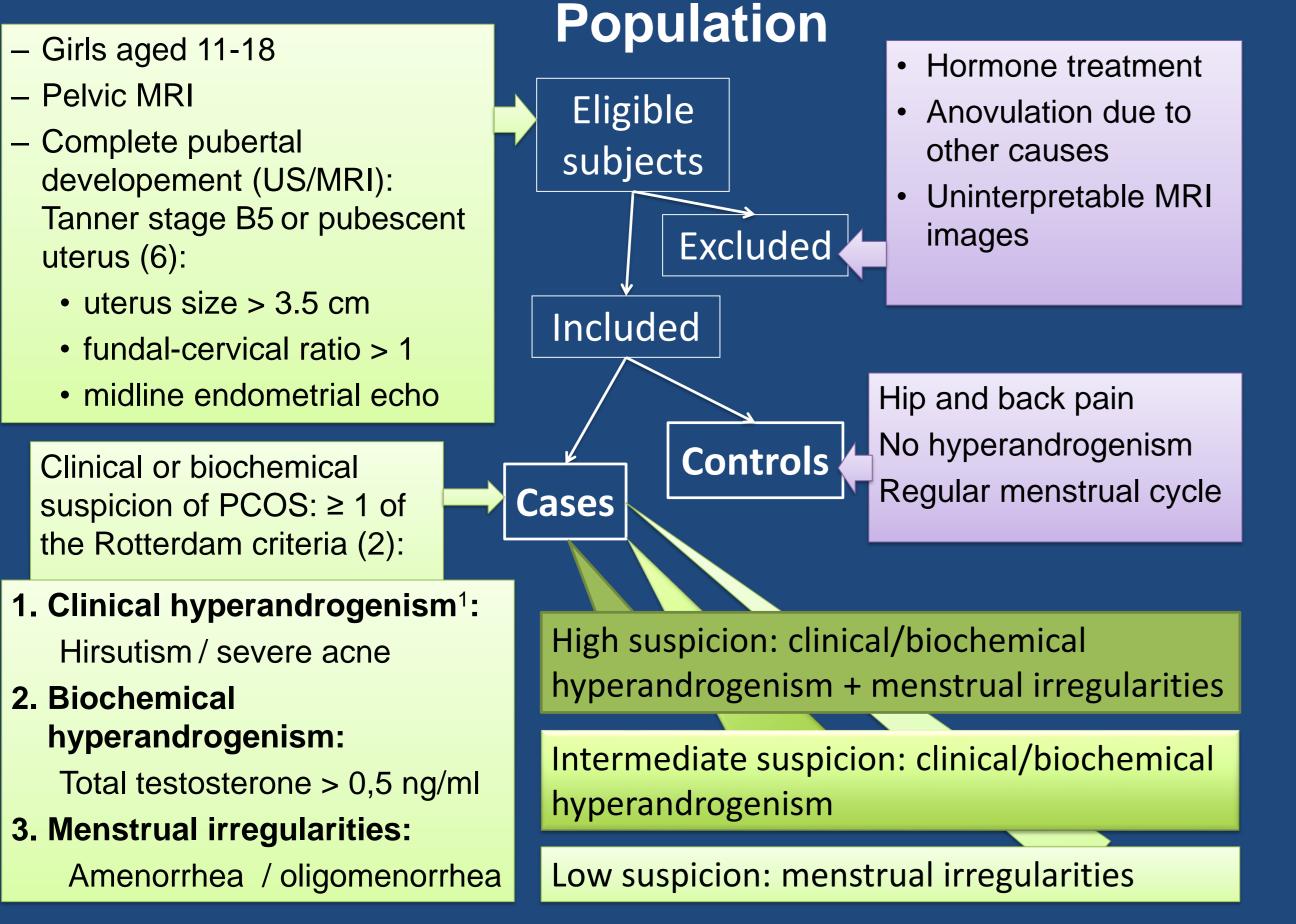
1) Oligo- and/or anovulation

3) Polycystic ovaries by US

secreting tumours, Cushing's syndrome)

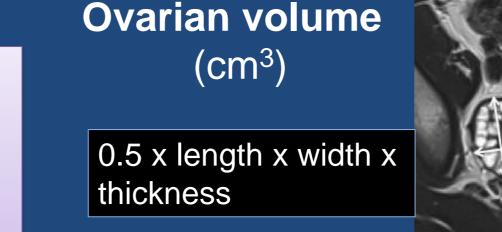
Diagnosis in adolescent girls: no consensus (2)

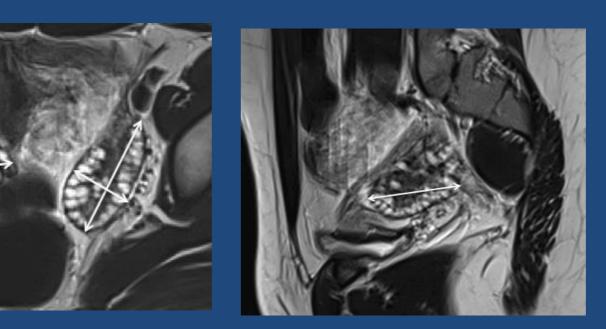
Transvaginal US cannot be used in girls who are virgins, and transabdominal US is of little help in analyzing ovarian morphology in overweight patients (2-4).

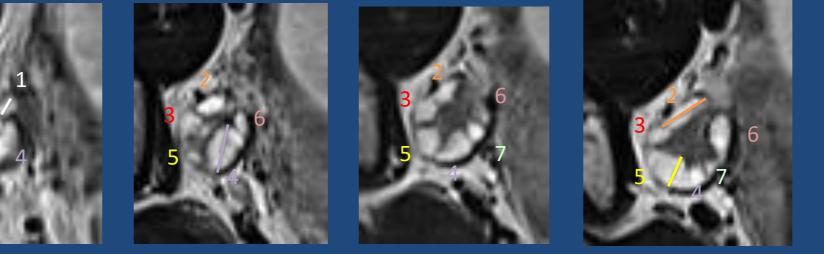

MRI is a non-invasive modality unaffected by fat thickness. It offers a valuable alternative for analyzing the follicular characteristics in PCOS, but it has received little study in adolescent girls (5).

Objective: To evaluate the validity and reproducibility of MRI for the diagnosis of PCOS in adolescent girls.

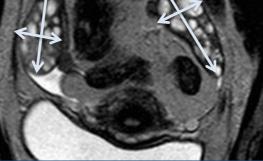
 \geq 12 follicles per ovary measuring 2 – 9 mm in diameter


Methods

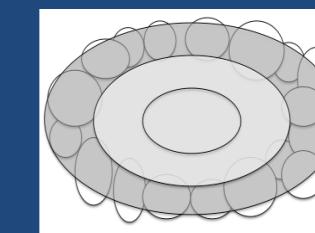

Prospective (2014-2015) and retrospective (2006-2014) study. Two independent analysis (MF and VH) of 50 randomly-selected MRIs from the PCOS cases.


MRI-based diagnostic criteria

Quantitative criteria (both ovaries' average (2)).

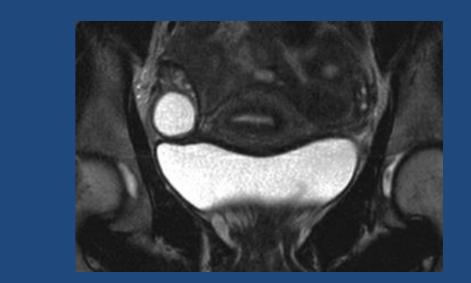

Follicle number per ovary for follicles $\leq 9 \text{ mm}$ and $\leq 5 \text{ mm}$

Sphericity index


smallest / largest diameter

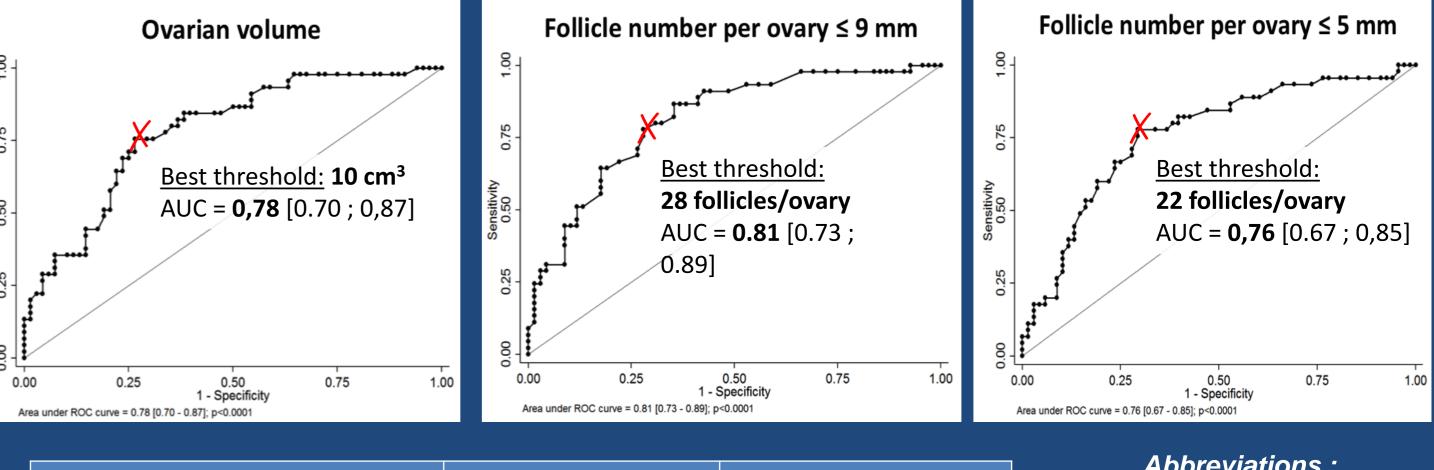
Two orthogonal measurements

Semi-quantitative criteria


Peripheral distribution of follicles: at least 2/3 in the outermost layer.

Three T2-weighted planes.

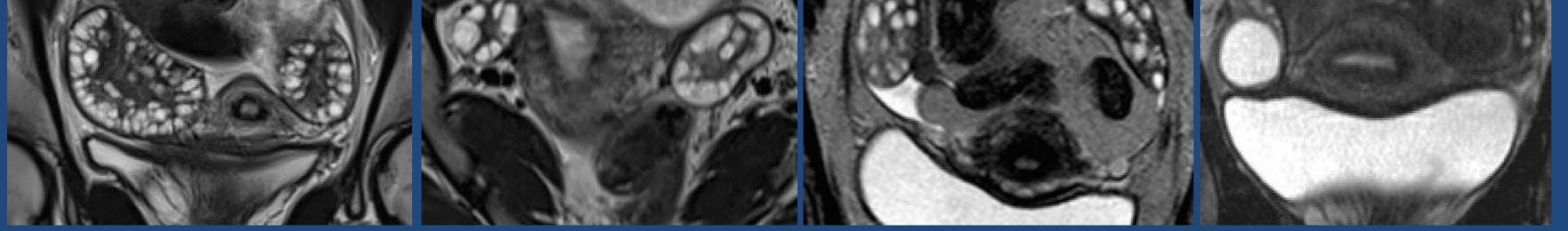
Three concentric layers of equal thickness.


Absence of dominant follicle: unique follicle of diameter 15-28 mm.

Results

Subjects		Clinical and/or biochemical suspicion of PCOS				
		High (N=45)	Intermediate (N=8)	Low (N=7)	Controls (n=68)	p**
Age (years)	Median (IQR)	16.0 (15.0-17.0)	16.5 (15.0-17.0)	16.0 (15.0-17.0)	14.0 (13.0-16.0)	
Menstrual irregularities	Number (%)	44 (97.8)	0 (0.0)	7 (100.0)	0 (0.0)	
Clinical hyperandrogenism*	Number (%)	33 (73.3)	8 (100.0)	0 (0.0)	0 (0.0)	
Total testosterone (ng/L)	Median (IQR)	0.8 (0.6-1.1)	0.6 (0.6-0.8)	0.3 (0.3-0.4)	- (-)	
Ovarian volume	Median (IQR)	11.9 (9.6-18.1)	12.8 (7.4-16.6)	7.2 (5.1-8.2)	6.8 (4.4-9.9)	0.0001
FNPO-9	Median (IQR)	39.5 (31.5-53.0)	29.0 (21.8-45.5)	28.5 (27.0-49.0)	22.0 (16.3-32.5)	0.0003
FNPO-5	Median (IQR)	29.0 (22.0-38.0)	25.3 (17.5-39.5)	23.0 (19.5-36.0)	17.0 (11.5-23.3)	0.0001
Sphericity index	Median (IQR)	0.6 (0.6-0.8)	0.6 (0.6-0.7)	0.6 (0.5-0.7)	0.6 (0.5-0.7)	0.99
Peripheral distribution of follicles	Number (%)	17 (37.8)	3 (37.5)	0 (0.0)	3 (4.4)	0.0001
Absence of dominant follicle	Number (%)	42 (93.3)	7 (87.5)	4 (57.1)	52 (76.5)	0.023

Validity of MRI-based criteria



MR criteria	Sensitivity (%) (95% CI)	Specificity (%) (95% CI)	
Peripheral distribution	38	96	
of follicles	(24 - 54)	(88 - 99)	
Absence of dominant	93	24	
follicle	(82 - 99)	(14 - 35)	

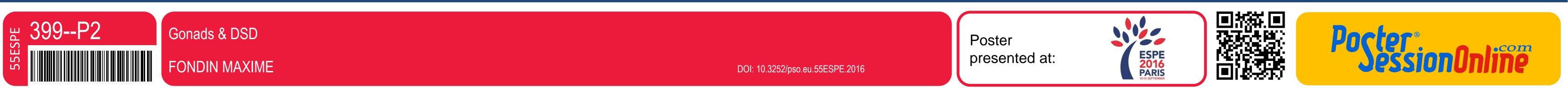
Abbreviations : FNPO-9: Follicle number per ovary $\leq 9 mm$; FNPO-5: Follicle number per ovary $\leq 5 mm$; ICC: Intraclass correlation coefficient; 95% CI: Confidence interval of 95 %.

Reproducibility of MRI-based criteria measures

MR criteria	Correlation coefficient	95% CI	
Ovarian volume > 10 cm ³	ICC = 0.88	0.81 - 0.93	
FNPO-9 \geq 28 follicles per ovary	ICC = 0.54	0.11 - 0.76	
FNPO-5 \geq 22 follicles per ovary	ICC = 0.60	0.38 - 0.75	
Sphericity index ≥ 0.7	ICC = 0.14	-0.09 - 0.37	
Peripheral distribution of follicles	Kappa = 0.39	0.10 - 0.60	
Absence of dominant follicle	Kappa = 0.73	0.50 - 1.01	

* Ferriman score > 8 ; ** Orthogonal linear trend test after quantile regression (quantitative variables) or logistic regression (binary variables).

Ovarian volume had the best inter-observer reproducibility.


Conclusion

MRI is a valuable tool to confirm PCOS in adolescent girls based on clinical and hormonal characteristics when transvaginal US cannot be performed. The most accurate diagnostic criteria by MRI were FNPO \leq 9 mm, ovarian volume and peripheral distribution of follicles. The most reliable criterion was ovarian volume.

In the future, these MR criteria could be tested in a larger cohort of adolescents with only isolated menstrual irregularities. This would be an important step toward early differential diagnosis of PCOS versus transient physiologic menstrual irregularities which are frequent at puberty.

- Fauser BCJM, Tarlatzis BC, Rebar RW et al. Fertil Steril 2012;97(1):28-38.e25.
 Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Hum Reprod Oxf Engl. 2004;19(1):41-47.
 Goodman NF, Cobin RH, Futterweit W et al. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol

- 2015;21(11):1291-1300.
 Azziz R, Carmina E, Dewailly D et al. Fertil Steril. 2009;91(2):456-488.
 Kenigsberg LE, Agarwal C, Sin S et al. Fertil Steril 2015;104(5):1302-1309.e4.
 André C, Bouvattier-Morel C, Ferey S et al. Imagerie pédiatrique et foetale. Médecine Sciences Publications. 2007. p. 739-746.

