HYPOGONADOTROPIC HYPOGONADISM IN A PATIENT WITH VANISHING TESTIS SYNDROME – CASE REPORT

Zsuzsanna Szántó¹, Annamária Nagy², Monica Beldean², Igor Calancea³, Imre Zoltán Kun⁴

- 1. Department of Endocrinology, University of Medicine and Pharmacy Tirgu Mures, Romania
- 2. Clinical Department of Endocrinology, Clinical Hospital Mures County
- 3. Department of Urology, Medical Center Nova Vita Hospital, Tirgu Mures
- 4. Doctoral School, University of Medicine and Pharmacy Tirgu Mures

OBJECTIVES

Vanishing testis syndrome leads to hypergonadotropic hypogonadism.

We report a case detected with hypogonadotropic hypogonadism after puberty time.

CASE HISTORY

The 28-years-old patient was diagnosed with bilateral cryptorchidism and phymosis at birth. At 1, than 3 and 7-years-of-age surgical explorations have not found the testes.

Meanwhile one cure of hCG therapy was applied, without any success.

Endocrine investigations continued just at 24 years-of-age (in 2011):

- infantile external male genitalia, undeveloped male secondary sexual characters Surprisingly, very low LH (0.13 mlU/mL) and FSH (0.7 mlU/mL) with low free testosterone level (1.64 pg/mL, normal: 5.5-42) were detected.
- normal hypothalamic-pituitary system on MRI
- abdominal and pelvic MRI: the gonads were not found, hypoplastic prostate and seminal vesicles
- Karyotype: 46,XY

Table 1. Hormonal assessment in 2016

Hormonal assessment	Value	Reference range for age and gender	
TSH	1.23 mIU/L	0.35-4.94	
free-T4	1.10 ng/dL	0.7-1.48	
Baseline cortisolaemia at 8:00 AM	12.8 microg/dL	5-23	
Prolactin	5.46 ng/mL	3.46-19.4	
LH	0.03 mIU/mL	1.5-15	
FSH	0.13 mIU/mL	0.95-11.95	
Total testosterone	37.4 ng/dL	142.4-923.1	
SHBG	20.8 nmol/L	13.5-71.4	
Albumin	40.34 g/dL	35-52	
Free testosterone	0.85 ng/dL – 2.28%	5-19.8 1.1-2.5%	
Bioavailable	20.2 ng/dL –	83-257	
testosterone	54%	35%	
AMH (anti-müllerian h.)	2.02 ng/mL	1.43-11.6	
DHEAS	370.5 microg/dL	167.9-591.9	

Table 2. Human chorionic gonadotropin stimulation test

hCG stimulation test	Total testosterone	Androstene- dione	Dihydro- testosterone	hCG (normal<2.5)	
Day one	26 ng/dL (241-827)	6.7 nmol/L (2.09-10.82)	67 ng/L (250-1,000)		
2+1/2 amp. hCG 1,500 U im. (1,500 U/m2 SQ)					
Day three	30 ng/dL	4.92 nmol/L	61 ng/L	33.9 mIU/mL	
2+1/2 amp. hCG 1,500 U im. (1,500 U/m2 SQ)					
Day six	22 ng/dL	4.81 nmol/L	80 ng/L	25.2 mIU/mL	

Interpretation: no testosterone response to hCG → no functional testicular tissue

INVESTIGATIONS, RESULTS

Due to **non-compliance** he returned to endocrine evaluation just at **28-years of age** (in **2016**), complaining of intense hypogastric pain and micturition disturbance.

Urological diagnosis and therapy: severe phymosis with chronic incomplete urinary retention and frequent urinary infections. Chronic prostatitis.

After circumcision urinary complains ceased.

Physical exam: Weight 112 kg, Height 185 cm, W/H: 0,97, BSA 2.4 m2, Armspam 189 cm, no testes in the scrotum, micropenis, stage Tanner 1, pubic hair stage Tanner 2, absence of secondary sexual characters, gynaecomastia, normosmia

Endocrine investigations:

Hormonal assessment is presented on Tables 1. and 2.

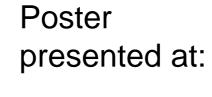
Imagistic findings:

Hypothalamic-pituitary MRI: hypothalamus, pituitary stalk, adeno- and neurohypophysis, and other structures with normal appearance.

Abdominal and pelvic MRI: undetected testicles, atrophic seminal vesicles, hypoplastic prostate, inflammatory inguinal lymph node enlargement.

DXA osteodensitometry: L1-L4 vertebral T score: -1,42 SD **Other investigation: Total PSA** <0.04 ng/mL (normal < 4)

DISCUSSION, CONCLUSIONS


The almost undetectable basal testosteron level, without any elevation after hCG stimulation test, and undetectable testicles on repeated abdominal and pelvic MRI prove the absence of both testicles (1). During puberty time an isolated hypogonadotropinaemia was detected with normal anatomy of hypothalamuspituitary system on MRI. Testosterone replacement therapy was started. Final diagnosis: 46,XY DSD: Vanishing testis syndrome, Hypogonadotropic hypogonadism, Secondary osteopenia. Gynoid obesity grade I. We report a case with bilateral anorchia associated with hyposecretion of gonadotropins. The occasional coexistence or correlation of these two etiologies need to be studied, in the literature being reported only in few cases (2, 3).

References

- 1. Davenport M, Brain C, Vandenberg C, Zappala S, Duffy P, Ransley PG, Grant D. The use of the hCG stimulation test in the endocrine evaluation of cryptorchidism. Br J Urol 1995;76:790-794.
- 2. Suzuki Y, Sasagawa I, Izumiya K, Nakada T, Sato J. A genotypic male with anorchia in conjunction with isolated idiopathic hypogonadotropic hypogonadism. Scand J Urol Nephrol. 1999; 33(5):347-9. PubMed PMID: 10573004.
- 3. MacArthur K, Neal DE Jr, VanMorlan AM. Anorchia masked by septo-optic dysplasia. Urology. 2012; 79(3):687-8. doi: 10.1016/j.urology.2011.10.030. PubMed PMID: 22196414.

