# Non-alcoholic hepatic steatosis in obese children and the relationship with insulin resistance

## Irene Fernandez Viseras, Mª Ángeles Santos Mata, Francisco José Macías López



Paediatric Endocrinology Department. Hospital de Jerez, Jerez de la Frontera, Spain.



Background: Hepatic steatosis is common in obese children. The pathophysiology remains unexplained but it is known that insulin resistance and hypertrilycerdemia are involved in its development.

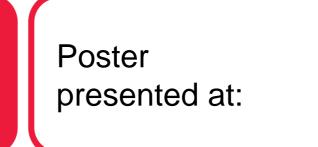
Objective and hypotheses: To analyse the prevalence of hepatic steatosis identified by ultrasound, as well as features and anthropometric data in our population divided into 2 groups: (with steatosis and without steatosis) to assess the risk factors.

#### Method:

In this cross-sectional study, 190 children aged 5-14 with BMI>2SD were evaluated from 1st January 2012 to 31st May 2015. Anthropometric data, family history, biochemical parameters as fasting glucose, fasting insulin, lipid profile, index (HOMA-IR) uric acid and the presence of acanthosis nigricans were evaluated. Liver ultrasound was performed to divide into 2 groups. All patients underwent to OGTT. Statistical analysis was performed by SPSS13.0 program.

#### Results:

190 patients(51%male and 49% female). We found (36.84% had steatosis vs 63.15% without steatosis). Subjects with hepatic steatosis had mean age(13 +/- 1.7years vs.subjects without steatosis 10.4 +/- 1.4years) p<0.05. The prevalence of family history of obesity in subjects with steatosis was higher (60% vs.44%) p<0.05, as well as BMI (31.7+/-2.2 vs.26.7+/-1.3)p<0.05, abdominal circumference (100+/-8cm vs.90+/-15cm)p<0.005, fating insulin (17.5+/-3.5mIU/ml vs.14+/-5.5 mIU/ml) p<0.05, (HOMA-IR) (3.8+/-1.5 vs.2.8+/-1.1) p<0.05, triglycerides (123.1+/-6.4mg/dl vs.74.4+/-5.3mg/dl) p<0.005, GOT (40+/-4.7 U/L vs.26+/-2 U/L) p<0.005 and GPT (49+/-3.8 U/L vs.37+/-1.5 U/L respectively) p<0.05. High-density lipoprotein cholesterol was lower in subjects with steatosis compared to those without (39+/-4mg/dl vs.48.8+/-3.8mg/dl


| LEVELS OF GLUCOSE, INSULIN AND HOMA |                 |                     |                      |           |  |
|-------------------------------------|-----------------|---------------------|----------------------|-----------|--|
| VARIABLES                           |                 | HS                  | NO HS                | p         |  |
| Glucose (mg/dl)                     |                 | 85 +/-9             | 83 +/- 9             | NS        |  |
| Insulin                             | Tanner I - IV   | 17,5 +/-3,5<br>(70) | 14+/-5,2<br>(120)    | p<0,05    |  |
|                                     | Tanner I - II   | 13,4 +/-1,8 (32/70) | 11+/-2,5<br>(74/120) | P=0,05    |  |
|                                     | Tanner III - IV | 22,6 +/-1,7         | 16 +/- 3,5           | p<0,005   |  |
| HOMA-IR                             | Tanner I - IV   | 3,8 +/-1,5          | 2,9+/-1,1            | p = 0,003 |  |
|                                     | Tanner I - II   | 2,8+/-0,5           | 2,3+/-0,9            | P=0,05    |  |
|                                     | Tanner III - IV | 4,2+/-0.9           | 2,83+/-0,48          | P<0,001   |  |

|                            | HEPATIC<br>STEATOSIS | NO HEPATIC<br>STEATOSIS | P       |
|----------------------------|----------------------|-------------------------|---------|
| N                          | 70                   | 120                     |         |
| MEAN AGE                   | 13+/-1,7             | 10,4+/-1,4              | P<0,05  |
| FAMILY HISTORY             | 42/70=60%            | 53/120=44,1%            | P<0,05  |
| IMC                        | 31,7+/-2,2           | 26,7+/-1,3              | P<0,05  |
| ABDOMINAL<br>CIRCUNFERENCE | 100+/-8              | 90+/-15                 | P<0,005 |
| FASTING INSULIN            | 17,5+/-3,5           | 14+/-5,5                | P<0,05  |
| TRIGLYCERIDES              | 123,1+/-6,4          | 74,4+/-5,3              | P<0,005 |
| CHOLESTEROL                | 160+/-20             | 157+/-17                |         |
| HDL                        | 39+/-4               | 48,8+/-3,8              | P<0,003 |
| GOT                        | 40+/-4,7             | 26+/-2                  | P<0,005 |
| GPT                        | 49+/-3,8             | 37+/-1,5                | P<0,05  |

### Conclusion:

The prevalence of hepatic steatosis in our population is higher than other published reports. Our results show that hepatic steatosis is related with increased BMI, abdominal circumference, hypergtriglyceridemia and (HOMA-IR) Furthermore these parameters could be used to assess the risk of developing steatosis.







