

The Postnatal Effect of Serum Vitamin D Binding Protein on Serum Vitamin D Level

Hakan Doneray¹, Remziye Seda Yesilcıbik², Esra Laloglu³, Zerrin Orbak¹

¹Ataturk University Faculty of Medicine, Department of Pediatric Endocrinology, Erzurum, Turkey, ²Ataturk University Faculty of Medicine, Department of Pediatrics, Erzurum, Turkey, ³Erzurum Public Health Laboratory, Erzurum, Turkey

BACKRAUND

- It is not an uncommon situation that newborns have normal serum Ca, P, Mg, ALP, and PTH levels despite low vitamin D.
- Serum vitamin D binding protein (VDBG) may play a role for this situation.
- However, there is no any study investigated the relationship between serum vitamin D and VDBP in postnatal period.
- The aim of this study is to examine the relationship between serum vitamin D level and VDBP in neonates who have normal serum Ca, P, Mg, ALP, and PTH levels despite low vitamin D and investigate the effect on serum vitamin D level of prophylactic vitamin D dose (400 unite/day).

MARERIALS AND METHODS

- Mothers and their newborn, whose serum Ca, P, Mg, ALP, and PTH levels were normal, were separated into two groups by their serum vitamin D level.
- Group A: Low vitamin D
- Group B: Normal vitamin D
- VDBP level was measured in both group.
- Mothers and their newborns in group A were given 400 unite/day vitamin D.
- Serum Ca, P, ALP, Mg, PTH, vitamin D, and VDBP levels in group A were re-measured on the postnatal 45-60th days.

RESULTS

- Both group A and group B had 30 mother-newborn pairs.
- There was no difference between group A and B in terms of antropometric parameters of newborns.
- There was no difference between group A and B in terms of serum Ca, P, Mg, ALP, and PTH levels of mothers and their newborn, whereas mothers and their newborn in group A had significantly lower vitamin D (p= 0.000 and p=0.000, respectively) and higher VDBP (p=0.04 and p=0.004, respectively) (Table 1 and 2).
- On the 45-60th days, mothers' serum Ca and vitamin D levels significantly increased (p=0.000; p=0.000, respectively), whereas there was no difference in VDBP level (Table 3).
- On the 45-60th days, newborns' serum Ca and vitamin D levels significantly increased (p=0.000), however there was no difference in VDBP level (Table 4).
- A negative correlation was found between serum vitamin D level and VDBP in newborns (p<0.048, r=-0.239 and p<0.002, r=-0.401, respectively) (Figure 1).

Table 1. Mothers' Ca, P, Mg, ALP, PTH, vitamin D, and DVBP levels (mean±SD)

	Group A	Group B	p
Ca (mg/dl)	8,98±0,25	8,99±0,20	0.82
P (mg/dl)	3,35±0,35	3,240±0,42	0.27
Mg (mg/dl)	2,02±0,24	2,02±0,17	0.97
ALP (U/l)	152,97±33,04	159,67±31,46	0.45
PTH (pg/ml)	30,87±11,12	27,56±11,52	0.26
Vitamin D (ng/ml)	8,91±1,52	29,18±6,21	0.000
VDBP (µg/ml)	0,51±0,65	0,25±0,28	0.04

Table 2. Newborns' Ca, P, Mg, ALP, PTH, vitamin D, and DVBP levels (mean±SD)

	Group A	Group B	\boldsymbol{p}
Ca (mg/dl)	9,25±0,86	9,69±0,59	0.057
P (mg/dl)	5,93±0,93	5,57±0,66	0.08
Mg (mg/dl)	2,12±0,31	2,26±0,32	0.089
ALP (U/I)	270,03±81,36	288,60±70,63	0.34
PTH (pg/ml)	31,06±9,98	28,65±9,80	0.35
Vitamin D (ng/ml)	9,07±1,19	30,99±8,12	0.000
VDBP (μg/ml)	0,69±0,46	0,33±0,45	0.004

Table 3. Mothers' Ca, P, Mg, ALP, PTH, vitamin D, and DVBP levels on the 45-60th days (mean+SD)

	At the birth	Postnatal 45-60th days	p
Ca (mg/dl)	8,98±0,25	9,56±0,52	0.000
P (mg/dl)	3,35±0,35	3,53±0,51	0.303
Mg (mg/dl)	2,02±0,24	2,20±0,26	0.08
ALP (U/l)	152,97±33,04	152,59±37,08	0.89
PTH (pg/ml)	30,87±11,12	27,76±12,04	0.13
Vitamin D (ng/ml)	8,91±1,52	31,28±8,53	0.000
VDBP (μg/ml)	0,51±0,65	0,56±0,54	0.86

Table 4. Newborns' Ca, P, Mg, ALP, PTH, vitamin D, and DVBP levels on the 45-60th days (mean±SD)

	At birth	Postnatal 45-60th days	p
Ca (mg/dl)	9,25±0,86	10,09±0,59	0.000
P (mg/dl)	5,93±0,93	5,94±0,79	0.97
Mg (mg/dl)	2,12±0,31	2,18±0,43	0.23
ALP (U/l)	270,03±81,36	287,90±89,70	0.39
PTH (pg/ml)	31,06±9,98	25,70±13,01	0.000
Vitamin D (ng/ml)	9,07±1,19	37,74±10,17	0.000
VDBP (µg/ml)	0,69±0,46	0,71±0,54	0.86

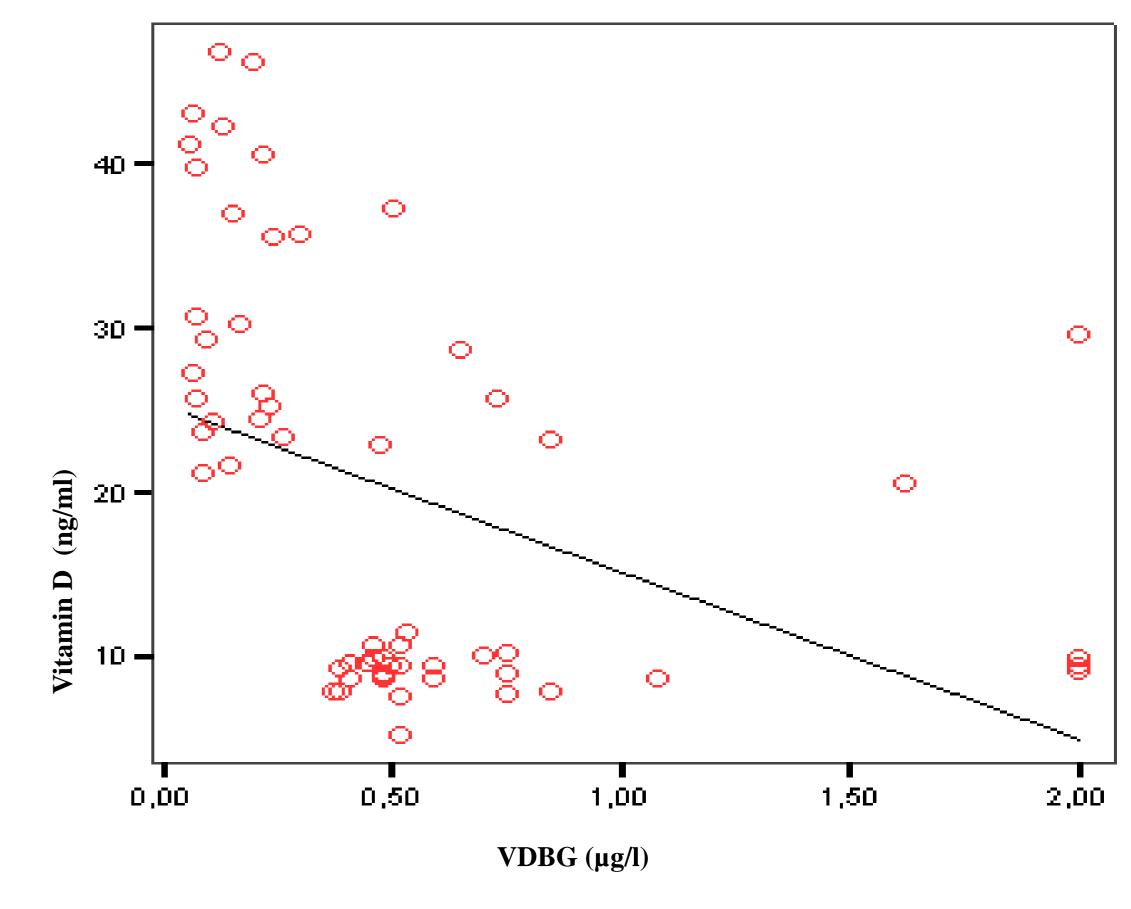
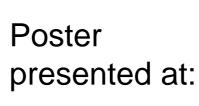


Figure 1. Correlation between serum vitamin D level and VDBP in newborns

CONLUSION


- Serum Ca, P, Mg, ALP, PTH, and vitamin D levels should be evaluated carefully in both mother and their newborn.
- If serum Ca, P, Mg, ALP, and PTH levels are not consistent with vitamin D level, it should be kept in mind that this situation may be related to high VDBP level.
- In that case, prophylactic vitamin D dose should be preferred instead of high dose vitamin D therapy.

REFERENCES

- 1. White P, Cooke N. The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab. 2000 Oct;11(8):320-7.
- 2. Carpenter TO1, Zhang JH, Parra E, Ellis BK, et al. Vitamin D binding protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers. J Bone Miner Res. 2013 Jan;28(1):213-21. doi: 10.1002/jbmr.1735.

