

Prader-Willi syndrome-different patients, different attitude

Anamaria Bursuc¹, Alina Belceanu¹, Ioana Armasu¹, Georgiana Constantinescu¹, Daniela Boisteanu², Cristina Rusu³, Letitia Leustean¹, Carmen Vulpoi¹ 1 – Department of Endocrinology, 2 – Department of Pneumology, 3 - Department of Genetics University of Medicine and Pharmacy "Grigore.T. Popa" - Iaşi, Romania

Introduction

* Prader-Willi Syndrome (PWS) is a multisystemic genetic disorder caused by lack of expression of genes on the paternally inherited chromosome 15q11.2-q13 characterized by

- > dysmorphic features, hypotonia, mental retardation, behavioral abnormalities, hyperphagia with progressive obesity and endocrine dysfunctions as hypogonadism and GH deficiency (GHD) (1)
- * Risk factors for mortality in PWS include severe obesity, obstructive sleep apnea, upper respiratory tract infections (URI), aspiration, and tonsilor/adenoid hypertrophy The major cause of morbidity and mortality is severe obesity
 - \succ which can be controlled externally by diet restrictions and behavior modification (2)

Early diagnosis is important

- to effective long-term management
- prevent complications
- prolong life expectancy

Growth hormone treatment improves growth, physical phenotype and body composition (3)

Case reports

Case 1	Case 1Diana, 21 years	Case 2 Fabiana, 11 years	Case 3Vlad, 27 years	Case 2 Achantosis
Facies				Facies nigricans
	 only child of a non-consanguineous couple born at terme (34 w) weight 2200 g Apgar 7 	 only child of a non-consanguineous couple born at terme in 2005 weight 2700g Apgar 8 	 first child of a young non- consanguineous couple 1 healthy brother born at terme weight 3500g 	
B ATT	<pre>*first years of life:</pre>	<pre>*first years of life:</pre>	• Apgar – no information	
2	 important hypotonia tube fed in the first 6 months mental and motor retardation hyperphagia started at 1st year of life 	 generalized hypotonia mental and motor retardation hyperphagia started after the 1st year of life 	<pre>*first years of life:</pre>	Acromicria
	 general seizures by the age of 2 sleep apnea 	<pre>\$11 years old:</pre>	 generalized hypotonia psyghological and mental retardation 	
Acromicria	*18 years old	 obesity- 52 kg, BMI for children=27.3 kg/m2 height: 137.5 cm, -1.2 DS puberty stage: BI-II PII bone age: 11 years 	• hyperphagia started after the 1 st year of life	
	 obesity - 84,3kg, BMI=34.6 kg/m2 final height 156 cm (-0,5 SD) 		*17 years old	

 Clinical examination narrow forehead 	Clinical examination	 obesity – 80kg final height 159 cm, -2.7 DS epiphyseal closure 	
 discrete almond-shaped palpebral fissures acromicria genital development - telarche (B3-4) menarche absent important mental retardation 	 discrete almond-shaped palpebral fissures acromicria achantosis nigricans dental malposition Moderate mental retardation 	 Clinical examination discrete almond-shaped palpebral fissures Acromicria Genital hypoplasia 	
* Genetics	* Genetics	severe sleep apneamoderate mental retardation	
 at 8 years: caryotype 46, xx. test FISH: del (15) (q11.2-q13) 	 at 4 years: caryotype 46,xx; MS-PCR metilation 15q11.2-q13 	*Genetics	
* Biological tests	* Biological tests	• caryotype 46,xx; del (15) (q11.2-q13)	
 Normal thyroid and adrenal axes Normal estradiol and gonadotrophines IGF1 normal (138 ng/ml At 6 y, low GH (0,2 μg/l), insufficient clonidine stimulation (5,6 μ g/l) 	 mild hypothyroidism compensate with lT4 normal adrenal function low IGF1=96.5 ng/ml (N: 111-551) low basal GH<0.05 ng/ml, without stimulation at the arginine test 	 * Biological tests •Normal thyroid and adrenal axes •Low IGF1 – 14,3 ng/ml (N:130-600) 	

All pictures are reproduced with informed consent.

Discussions

• fat mass (electric impedance) 34%

Our 3 cases presented specific clinical features of PWS and genetic confirmation, but the therapeutic attitude was different for each case:

- **Case 1**:

Conclusion

- > With rigorous alimentation and constant psychological and parental support, the weight in our cases did not excessively increase.
- > The benefits of GH treatment are substantial as it not only improves physical characteristics and psychomotor development, but also has psychological and behavioral benefits, the major concern being aggravation of sleep apnea.(4)
- at the age of 10, had important obesity (+10SD) and a surprising height at +2SD despite of partial GHD
- her actual height remains higher than expected (-0.5SD) 0
- although basal GH remains low and IGF1 at the inferior limit, the association of confirmed sleep Ο apnea temporized the GH treatment

\succ Case 2:

- at the age of 11, presented moderate obesity and a height of 137.5 cm (-1.2 DS) 0
- the confirmed GHD, with the possible aggravation of obesity, in the absence of sleep apnea, justified the rhGH therapy

\succ Case 3:

- o had the first endocrinological examination at the age of 17 years and presented epiphyseal closure, with a final height of 159 cm (-2.7SD) and moderate overweight
- o in spite of confirmed GHD, no treatment was initiated because of parents' option
- > Aggravation of pre-existing conditions due to GH therapy have been found in some individuals in literature and should be closely monitored.
- GH treatment is recommended and should be individualized for patients with PWS in conjunction with dietary, environmental and lifestyle interventions.(5)

References: (1).Suzanne B Cassidy and Daniel J Driscoll. Prader-Willi syndrome. European Journal of Human Genetics 2009; 17: 3-13; (2). Grechi Elena et al. Prader-Willi Syndrome: Clinical Aspects. Journal of Obesity 2012; (3) Alan Y Ho and Anastasia Dimitropoulos. Clinical management of behavioral characteristics of Prader Willi syndrome. Neuropsychiatric Disease and Treatment 2010; 6: 107-118. (4): Graziano Grugni et al. Growth hormone therapy for Prader Willi syndrome: challenges and solutions. Therapeutics and Clinical Risk Management 2016; 12: 873-881. (5) Zehra Aycan and Veysel Nijat Bas. Prader-Willi Syndrome and Growth Hormone Deficiency. Journal of Clinical Research in Pediatric Endocrinology 2014; 6: 62-67.

