

55th Annual ESPE Meeting ESPE2016 LO-12 SEPTEMBER

Impaired Cardiac Function in a mouse model of ACADEMY OF ATHENS BRFAA **Generalised Glucocorticoid Resistance**

Agaristi Lamprokostopoulou¹, Aimilia Varela², Michalis Katsimpoulas², Constantinos Dimitriou², Nikos Athanasiadis², Eleana Soultou², Alketa Stefa¹, Manolis Mavroides², Constantinos H. Davos², George P. Chrousos¹, Tomoshige Kino³, Spiros Georgopoulos⁴, Evangelia Charmandari¹

> ¹Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Greece ²Cardiovascular Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

³Department of Experimental Therapeutics, Division of Experimental Biology, Sidra Medical and Research Center, Doha, Qatar, ⁴Department of Cell Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

The authors have no financial relationship(s) to disclose relevant to this poster presentation

Background: Glucocorticoids regulate a broad spectrum of physiologic functions essential for life and exert their actions through their ubiquitously expressed glucocorticoid receptor (GR). The GR interacts with several molecules, including the non-coding RNA growth arrestspecific 5 (Gas5), which binds to the DNAbinding domain of the GR, acting as a decoy glucocorticoid response element (GRE) and competing with DNA GREs for binding to the GR [1](**Fig.1**). Therefore, Gas5 decreases the transcriptional activity of the GR and reduces tissue sensitivity to glucocorticoids.

Cardiac function was evaluated by echocardiography MHz linear probe, GE) and 24-hour (13 electrocardiography (ECG) in Gas5/rtTA/DOX+ and Gas5/rtTA/DOX- mice (double transgenic mice without doxycycline administration), as well as in the wild-type mice with (WT/DOX+) or without (WT/DOX-) doxycycline administration. Left ventricular (LV) end-diastolic (LVEDD) and endsystolic diameter (LVESD), left ventricular posterior wall thickness at diastole (PWT) and the ratio of LV to PWT (r/h) were determined. The global LV function was evaluated by calculating the percentage of LV fractional shortening (%, FS). The heart rate (HR), and the number of ventricular and

not show differences ECG studies did among the three groups in terms of HR, ECG interval measurements and arrhythmias.

WT/DOX+ (WT) vs GAS5/rtTA/DOX+ (On)				
Table 1	WT	On	p value	
	n=7	n=7		
HR	582.85 ± 25.90	598.85 ± 16.68	0.61	
EDD(mm)	3.01 ± 0.04	3.24 ± 0.10	0.07	
ESD(mm)	1.62 ± 0.02	1.79 ± 0.06	0.04	
PWd(mm)	0.78 ± 0.01	0.77 ± 0.01	0.27	
PWs(mm)	1.31 ± 0.01	1.27 ± 0.01	0.02	
FS (%)	46.09 ± 0.76	44.67 ± 0.59	0.17	
r/h	1.92 ± 0.02	2.10 ± 0.06	0.02	

Table 1. Echocardiography study measurements in WT/DOX+ (WT) and GAS5/rtTA/DOX+ (On) mice

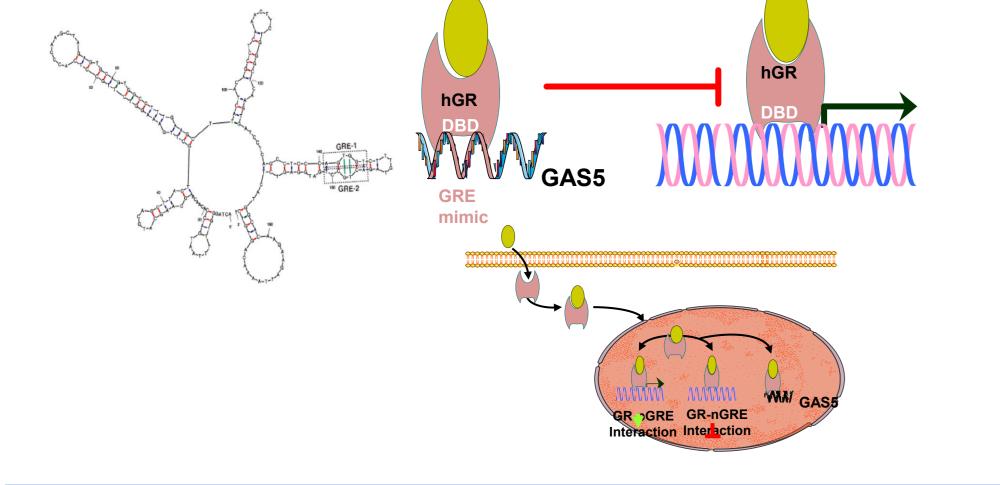
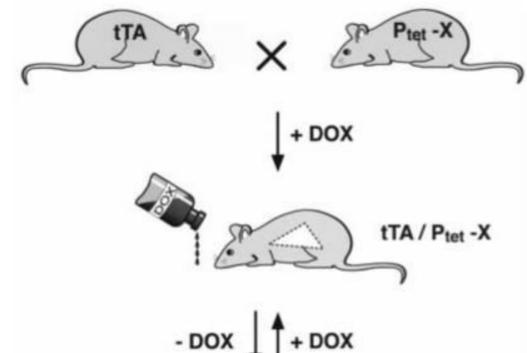



Figure 1: Mechanism of Gas5 interaction with GR.

of **Objective:** То create mouse model а Generalized Glucocorticoid Resistance (GGR) by inducible overexpression of Gas5 and to investigate its myocardial function.

Methods: For the generation of + DOX transgenic mice expressing Gas5, we inducible the used - DOX + DOX tetracycline system Tet On [2] (Fig.2), as it tightly controls Figure 2: The Tet-On system expression of the linked doxycycline transgene upon administration. Two transgenic lines expressing the reverse transactivator (rtTA) under hnRNP promoter and the Gas5 under Tet responsive P tight promoter were generated and then crossed to create double transgenic mice (Gas5/rtTA) (Fig.2). RNA was isolated from heart tissues after 2 weeks of doxycycline (DOX-) administration. (DOX-) or water Expression of Gas5 was measured with qRT-PCR.

supraventricular arrhythmias were measured by 24hour ECG recordings using surgically placed ECG electrodes that transmitted data to a telemetry ECG receiving system. ECG data were gathered for 5 min every 30 min during the 24-hour ECG recording and analyzed.

Results: Genetic constructs of double transgenic inducibly overexpressing after mice Gas5 doxycycline administration (DOX+) were generated. The induction of overexpression of Gas5 in: mice (2 weeks $DOX+;0.78\pm0.37$) Gas5/rtTA compared with i)Gas5/rtTA/DOX-mice (0.14 ± 0.04) , ii) single transgenic rtTA/DOX+ mice where the TetOn system is not functional $(0.3*10^{-4} \pm 0.5*10^{-5})$, and iii) WT/DOX+ mice $(0.7*10^{-5} \pm 0.8*10^{-5})$ was verified in the myocardium (Fig 3). 10-

GAS5/rtTA/DOX+ (On) vs GAS5/rtTA/DOX- (Off)

Table 2	Off (w/o)	On	p value
	n=5	n=5	
HR	600.40 ± 26.84	596.40 ± 24.06	0.93
EDD(mm)	3.04 ± 0.08	3.20 ± 0.13	0.23
ESD(mm)	1.56 ± 0.04	1.77 ± 0.08	0.05
PWd(mm)	0.81 ± 0.01	0.78 ± 0.01	0.003
PWs(mm)	1.32 ± 0.01	1.28 ± 0.01	0.003
FS (%)	48.45 ± 0.41	44.58 ± 0.78	0.003
r/h	1.88 ± 0.04	2.05 ± 0.07	0.07

Table 2. Echocardiography study measurements in
 GAS5/rtTA/DOX+ (On) and GAS5/rtTA/DOX- (Off) mice

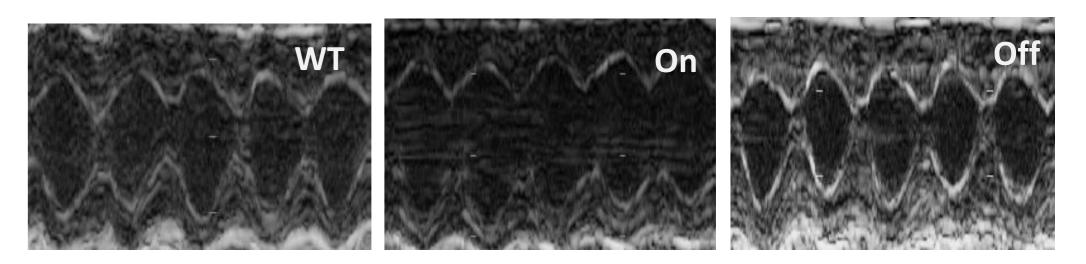
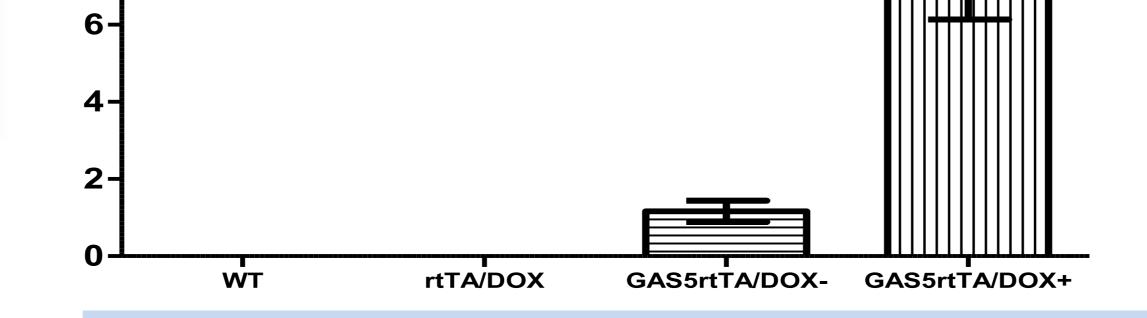



Figure 4. LV M-mode echocardiography images from WT/DOX+ (WT), GAS5/rtTA/DOX+ (On) and GAS5/rtTA/ DOX- (Off) mice

Figure 3: Expression study of Gas5 in cardiac tissues.

Cardiac function (% FS) was significantly decreased in Gas5/rtTA/DOX+ compared to Gas5/rtTA/DOX- $(44.6 \pm 0.8 \text{ vs} 48.5 \pm 0.4; \text{ p=}0.003)$.) but not compared to WT/DOX+ (46.9 \pm 0.4, p=0.2 as shown in Table 1. The reduction was mainly due to decreased systolic function in Gas5/rtTA/DOX+ (LVESD: 1.77 ± 0.01 mm; p=0.05) as shown in Table 2, Fig.4.

Conclusions: We created a mouse model of GGR and demonstrated impaired LV function. Ongoing studies aim to investigate the molecular mechanisms through which Generalized Glucocorticoid Resistance affects myocardial function.

References

1.Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest - and starvationassociated repressor of the glucocorticoid receptor. Sci Signal. 2010; 3(107): ra8.

2.Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992; 89, 5547-5551.

