Abstract number: 58 / RFC 6.6

Growth Hormone Deficiency Type II: Clinical and Molecular Evidence of Impaired Regulated GH Secretion Due to an GIn181Arg GH-1 Gene Mutation

Maria Consolata Miletta¹, Andrée Eblé¹, Andrew Dauber², Ivo JP. Arnhold³, Christa E. Flück¹, Amit V. Pandey¹

¹University Children's Hospital, Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, CH-3010 Bern, Switzerland and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland

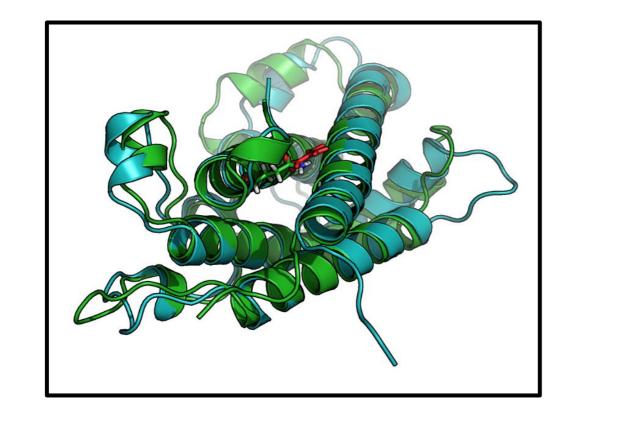
INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE ²Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA ³Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil

Authors have nothing to disclose

Introduction

A novel heterozygous missense mutation in the *GH-1* gene converting codon 181 from glutamine (Q) to arginine (R) was identified in a Brazilian girl (Figure 1). The index patient was referred for assessment of her severe short stature (-4.6 SDS) at a chronological age of 7yr 10 mo. The GH deficiency was confirmed by standard GH provocation tests, which revealed severely reduced GH and IGF-I concentrations. Genetic Analysis of the *GH-1* gene identified heterozygosity for p.Q181R mutation leading to the diagnosis of growth hormone deficiency type II (IGHD II).

Here, we describe the structure-function characterization of GH-Q181R by *in vitro* GH secretion studies as well as *in silico* mutagenesis and molecular dynamics simulations. Moreover, we performed a detailed structural analyses of the GH-Q181R mutant by generating recombinant *wt*-GH (wild type) and mutant GH protein in *Escherichia coli* (*E. coli*).


UNIVERSITÄT

Pedigree / Clinical Data

	Growth Hormone Deficiency type II				Patients with IGHD II	Growth chart of the affected girl	
					Highly variable clinical phenotype:	Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Birth: 2046 g (-0.1 SDS) and 50 cm (-0.9 SDS)
Category	Inheritance	GH RIA	Candidate gene	Status	 Short stature (-2.5 SD score or less for chronological age) 	180 % 180 170 Length / Height 97 cm 170 Cirk 1 18 uppr 90 170	Normal psychomotor development
	Desseite	A la a crat		Deletien/meutetien	 Delayed bone age (>2 years) 	Girls 1-18 years 75 160 Mother 142.8 cm Father 172 cm	Severe growth retardation (-4.6 SDS)
IGHD type IA	Recessive	Absent	Human <i>GH-1</i>	Deletion/mutation, frameshift	 Peak GH level less than 10 ng/ml after 	150 3	Arginine stimulation test:
				namesiint	standard pharmacological stimulation test	140	GH peak: 1.55 ng/ml
IGHD type IB	Recessive	Low	Human GH-1	Splice-site mutations	 Low concentration of IGF-1 	130	IGF-1 not measurable
			GHRH	Unlikely		110	Normal magnetic resonance imaging (MRI)
			GHRH-receptor	Mutations			Genetic analysis of the GH-1 gene identified heterozygosity for p.Q181R
IGHD type II	Dominant	Low	Human <i>GH-1</i>	Splice-site mutations Splice enhancer/ missense mutations	Figure 1. Growth hormone deficiency classification		IGHD II was diagnosed
IGHD type III	X-linked	Low	Unknown				Figure 2. Growth charts of the affected girl Adult height of mother and father, as well as adult target height are given. Percentiles are shown on the <i>extreme right</i> . The <i>solid circles</i> indicate the height measurements, the <i>open circles</i> the bone ages. The pointing up arrow indicates the beginning of rhGH treatment.

Results of Functional Analysis

Superimposition of wt-GH and GH-Q181R protein structural models

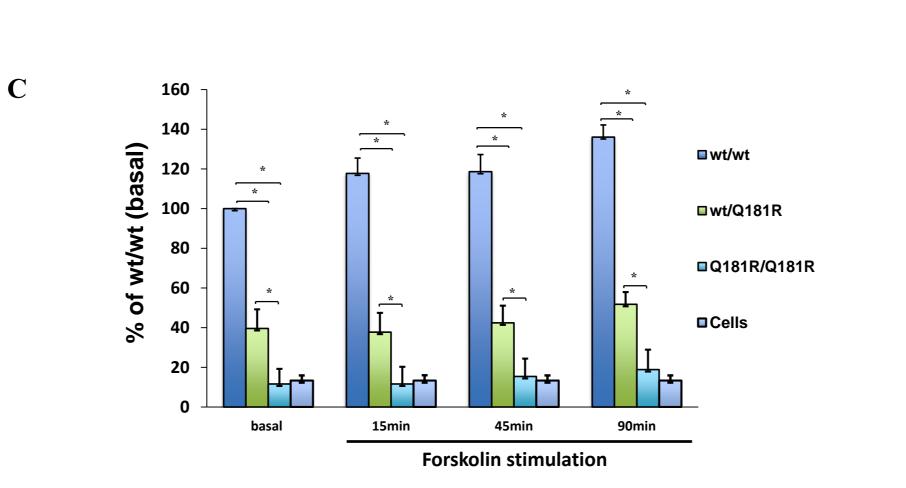

Secretion of wt-GH and/or GH-Q181R in AtT-20 cells after forskolin stimulation

В	Before Transfection	24h After Transfec	tion 4h After MG1	4h After MG132	
	Cells	wt/wt	wt/wt		
		19800 8600	1 3 - C - C - C - C - C - C - C - C - C -		

Analysis of wt-GH and GH-Q181R stability by Fast Proteolysis assay (FASTpp) and thermofluor assay

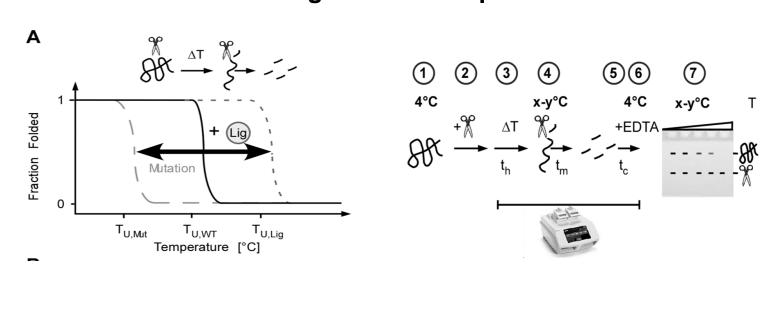
Mutation that compromise the protein structure shift the point of thermal unfolding to lower temperatures

Figure 3: Structure of *wt*-GH (green) and mutant (cyan) hGH molecules superimposed on each other. The *wt* 181 residue (GIn) is in green and mutant (Arg) in red. The large side chain of arginine protrudes towards the N terminus helix, getting in close proximity to form several hydrogen bonds and salt bridges.


Figure 4: A close-up of the mutant GH-Q181R. The R181 residue (right) forms salt bridge with aspartate 11 residue (left) located at the N-terminus helix forming a highly rigid structure compared to wt-GH.

The Q181R mutation results in a drastic change in inter atomic contacts between the N and C terminus helices in hGH. Mutation on glutamine to arginine results in strong salt bridge formations between aspartate 11 on the N terminus helix and arginine 181 on the C terminus helix of the mutated molecules. These interactions are absent in WT hGH. This would result in a far more rigid hGH protein than the WT and may impact the binding with hGHR

Experimental Setting


AtT-20 cells

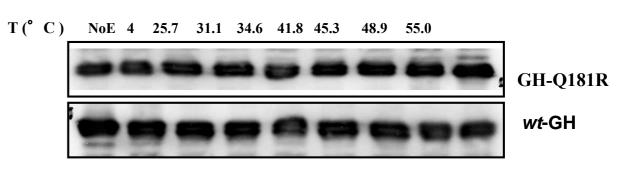


Figure 5. A. Cells were transfected either with *wt*-GH (*wt*-GH/*wt*-GH), GH-Q181R (Q181R/Q181R), or cotransfected with both *wt*-GH and GH-Q181R (*wt*-GH/Q181R). Twenty-four hours after transfection, AtT-20 cells were stimulated with 50 µM forskolin for 1.5h. Aliquots of culture medium were collected for GH measurement 0 to 90 min after stimulation.

B. Representative phase-contrast microscope pictures of cells transiently transfected with *wt*-GH and/or mutant and additionally treated for 4 h with MG132, a proteasome inhibitor.

C. The basal amount of GH measured in the medium of AtT-20 cells transfected with *wt*-GH (*wt/wt*) was arbitrarily set at 100% and the other measurements were compared against this. Results are given as the means \pm SD of three independent experiments (n=3). *, P < 0.01.

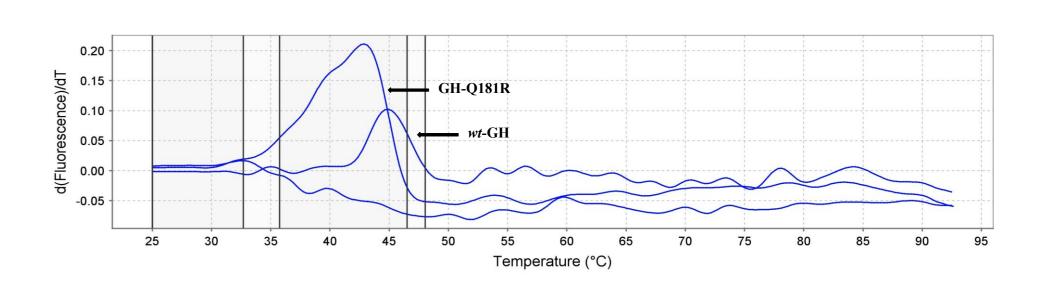


Figure 6. A. A schematic representation of Fastpp.

B. FASTpp of *wt*-GH and GH-Q181R analyzed by Western Blot. 0.02 mg/ml thermolysin was used to digest 0.40 mg/ml of *wt*-GH or GH-Q181R. This experiment was repeated at least three times and representative blots are shown.

C. Thermofluor profile of *wt*-GH and GH-Q181R. Data from Protein Thermal Shift[™]software show the derivative melt curves of *wt*-GH, and GH-Q181R (as indicated by the arrows). Data were collected at 2° C intervals from 25° C through 95° C on the 7500 Real-Time PCR System and analyzed using the Protein Thermal Shift[™] Software.

Conclusions

*We found a heterozygous missense mutation, Q181R in the GH molecule in a Brazilian patient associated with severe short stature.

* In silico mutagenesis analysis revealed that the nature of the amino acid substitution (glutamine to arginine at position 181) in the GH molecule causes a drastic change in interatomic contacts between the N and C terminus helices in hGH and this might result in a far more rigid hGH protein than the wt-GH.

*No significative differences in intracellular GH folding, stability between *wt*-GH and GH-Q181R were found by functional characterization of the GH-Q181R purified and expressed in E. coli through FASTpp and the thermofluor assay.

*Significative differences between wt-GH and GH-Q181R were found by functional characterization of the GH-Q181R through secretion studies together with cell proliferation when transiently transfected cells were used.

*Our results show that specific analyses of any GH variant, despite the presence of obvious clinical features of IGHD type II (low peak GH secretion, low IGF-1 concentrations) may reveal novel mechanisms of secretory pathophysiology and hence, help explaining the range of clinical features associated to IGHD II patients.

