Molecular analysis of a large cohort of MODY patients by Next Generation Sequencing R. Artuso¹, V. Orlandini², V. Palazzo², L. Giunti¹, S.Landini², A. Provenzano², A. La Barbera¹, S. Giglio^{1,2}, S. Stagi³ 1. Medical Genetics Unit, Meyer Children's University Hospital, Florence; 2.Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence; 3. Department of Science's Health, Meyer Children's University Hospital, Florence # INTRODUCTION AND OBJECTIVE Maturity-onset diabetes of the young (MODY) is a mono-genic non-autoimmune form of diabetes mellitus characterized by absence of ketosis, autosomal dominant inheritance, a young age of onset (<25 years) and primary defect in the function of the beta cells of the pancreas. MODY accounts for 2-5% of all cases of diabetes mellitus type 1 and 2 (T1D, T2D), but probably the true prevalence is underestimated as MODY shares clinical features with the more common forms of diabetes T1D and T2D. It is a phenotypically and genetically heterogeneous disorder with at least 14 subtypes. However, in about 50% of MODY patients, causative mutations in known genes (MODYx) have been described. Recent advances in next-generation sequencing (NGS) technologies make it affordable to search for rare and functional variants for common complex diseases systematically. On the bases of this observation, we decide to analyse 100 MODY patients through NGS approach. ### METHODS Target resequencing in about 100 cases with diagnosis of MODY and/or T2D. ### Design array custom for a set of 182 genes We selected the coding and regulatory regions of genes: implicated in MODY and different type of diabetes disorders; implicated in T2D; implicated in the pancreatic β cells pathway; causative of diabetes in mice models ## RESULTS | SAMPLE | GENE | Nucleotide change | Protein effect | rs OMIM ASSOCIATED | SAMPLE | GENE | Nucleotide change | Protein effect | rs OMIM ASSOCIATED | |---------------|------------------------------|--|---|--|---------|---------------------------------|---|---|---| | 10605 | SLC30A8
ABCC8 | c.589A>G
c.1616A>G | p.Ile197Val
p.Tyr539Cys | c.79A>C (p.lle27Leu) HNF1A rs1169288 | E/1181 | ADAMTS9
PAX6 | e.3274G>T
e.500C>G | p.Asp1092Tyr
p.Thr167Ser | c.67G>A (p.Glu23Lys) KCNJ11 | | A/1257 | GIPR
IFIH1 | e.983G>C
e.2027T>A | p.Arg328Pro
p.Leu676His | c.1403C>T (p.Pro446Leu) GCKR rs1260326
IVS4-9G>A WFS1 rs10010131 | B/781 | DGKG
O3FAR1
PAX4 | e.3318G>C
c.2276C>T
e.563A>G
e.773C>A | p.Glul106Asp
p.Thr759Met
p.Asp188Gly
p.Ala258Glu | c.79A>C(p.Ile27Leu) HNF1A rs1169288 | | B/296 | TLE1
DGKG | e.1228G>A
e.461C>T | p.Val410Met
p.Ser154Leu | c.67G>A (p.Glu23Lys) KCNJ11 rs5219 | D//61 | | | | | | B/1422 | ARAP1
GCK | c.2965G>C
c.448_450defTTC | p.Glu989Gln
p.Phe150del | c.79A>C (p.Ile27Leu) HNF1A rs1169288
c.484C>G (p.Leu162Val) PPARA rs1800206 | E/1081 | GATA2 | c.1875G>A
c.1150A>G | p.Met625Ile
p.Arg384Gly | c.67G>A (p.Glu23Lys) KCNJ11 rs5219 | | C/171 | PPARA
ADAMTS9 | e.160T>C
e.5303C>T | p.Tyr54His
p.Ala1768Val | c.67G>A (p.Glu23Lys) KCNJ11 rs5219
c.2911G>A (p.Gly972Arg) IRS1 rs1801278 | E/1074 | NCR3
THADA
THADA | c.286C>T
c.5773G>A
c.4018_4020delTCT | p.Arg96Trp
p.Glu1925Lys
p.Ser1340del | c.67G>A (p.Glu23Lys) KCNJ11 rs5219 | | B/1401 | SLC2A4
GLIS3 | e.944A>C
e.252A>T | p.Glu315Ala
p.Leu84Phe | | | ADAM30
MYT1 | e.1807C>A
e.1583A>C | p.Leu603Val
p.Gln528Pro | c.386T>A(Val129Glu)TMEM154 rs761728172
c.7963G>C (p.Glu2655Gln)LAMA1 rs73390524
c.7736G>A (p.Ser2579Asn)LAMA1 rs73390524
c.1403C>T (p.Pro446Leu) GCKR rs1260326
c.2836G>A (p.Ala946Thr)IFH1 rs1990760
c.441-26T>C G6PC2 rs560887 | | A/436 | ABCC8
RFX6 | e.4500C>A
e.1558A>T | p.Ser1500Arg
p.Ser520Thr | c.67G>A (p.Glu23Lys) KCNJ11 rs5219
c.1403C>T (p.Pro446Leu) GCKR rs1260326 | E/1610 | | | | | | B/446 | WFS1
RFX6 | c.2054G>A
c.1678G>A | p.Arg685His
p.Asp560Asn | | | | | | | | A/261 | INS
SLC30A8 | e.125T>C
e.377C>T | p.Val42Ala
p.Ala126Val | | | | | | IVS4-9G>A WFS1 rs10010131
c.1968G>C (p.Lys656Asn)LEPR rs1805094 | | D/823 | RBMS1
HNF1A | c.1072G>A
c.629C>T | p.Ala358Thr
p.Ser210Phe | | 15_0153 | PPARA
MC4R | c.259C>T
c.508A>G | p.Pro87Ser
p.Ile170Val | c.441-26T>C G6PC2 rs560887
IV84-9G>A WF81 rs10010131
c.2069G>C(p.Ser690Thr) PC8K1 rs6235
c.367G>A (p.Val123Ile) CEL rs201336247
c.885-5C>T GLP1R rs201451844 | | D/1114 | HNF1A
AGMO | c.1745A>G
c.1029T>G | p.His582Arg
p.Phe343Leu | c.67G>A (p.Glu23Lys) KCNJ11 rs5219
c.484C>G (p.Leu162Val) PPARA rs1800206 | | | | | | | D/1198 | SREBF1
ARAP1 | e.3062C>T
e.344C>T | p.Pro1021Les
p.Pro115Les | c.67G>A (p.Glu23Lys) KCNJ11 rs5219 | - | //UDF(PD) | c.4084A>G
c.211G>A | p.Ile1362Val
p.ALa71Thr | c.622G>A(p.Val208Ile) SDC3 rs2491132
c.2836G>A (p.Ala946Thr) IFH1 rs1990760
c.441-26T>C G6PC2rs560887
IVS4-9G>A WFS1rs10010131 | | D/1222 | ARAP1
ZFAND6 | e.344C>T
e.548A>T | p.Proll5Leu
p.Tyrl83Phe | e.67G>A (p.Glu23Lys) KCNJ11 | E/2212 | UHRF1BP1
BLK | | | | | B/1478 | HNF4A
GLIS3 | e.1360G>T
e.422T>C | p.Ala454Ser
p.Ile141Thr | c.67G>A (p.Glu23Lys) KCNJ11 rs5219 | | | | p.Leu19Pro
p.Glu211Lys | c.3475-7C>T ADAMTS9 rs199940595
c.986C>T(p.Thr329Ile) SDC3 rs2282440
c.668A>G (p.Gln223Arg) LEPR rs1137101 c.2836G>A
(p.Ala946Thr) IFH1 rs1990760
c.441-26T>C G6PC2 rs560887
c.2911G>A(p.Gly971Arg) IRS1 rs1801278
IVS4-9G>A WFS1 rs10010131
c.973C>T (p.Arg325Trp) SLC30A8 rs13266634
c.67G>A (p.Glu23Lys) KCNJ11 rs5219
c.1052G>A (p.Cys351Tyr) ANKRD55 rs76363118
c.10046G>A (p.Cys3349Tyr) HECTD4 rs753421097 | | D/1766 | GCK
ZFP57
RFX6
PRC1 | e.52C>T
e.1101G>C
e.2681C>T
e.1795C>T | p.Gln18*
p.GLN367His
p.Pro894Leu
p.Leu599Phe | e.67G>A (p.Glu23Lys) KCNJ11 | 15 0010 | PPARA | c.56T>C | | | | D/2015 | CAMK1D
THADA | c.1097T>C
c.4610G>A | p.Val366Ala
p.Arg1537Gln | | 15_0010 | AMT | c.631G>A | | | | E/13 | ARAP1
ADAM30 | c.1435G>A
c.1923G>A | p.Gly479Ser
p.Arg641Gln | c.484C>G (p.Leu162Val) PPARA rs1800206
c.2911G>A (p.Gly972Arg) IRS1 rs1801278 | | | | | | | D/1945 | NOTCH2
IRS1 | c.4647T>G
c.2057_2059delGCA | p.Ile1549Met
p.Ser686del | c.2911G>A (p.Gly972Arg) IRS1 rs1801278 | | | | | c.1052C>T (p.Ser351Leu) TBC1D4rs780021277
c.668A>G (p.Gln223Arg) LEPR rs1137101 | | E/713 | KLF11
TLE4 | c.145G>A
c.2081A>G | p.Glu49Lys
p.Lys694Arg | | | FFAR4
MOB2
CILP2
ABCC8 | e809G>AT
e.758G>A
e.23055C>A
e.3329+8T>C | p.Arg270His
p.Gly253Ala
p.Arg1019Trp | c.1337T>C (p Leu446Pro) GCKR rs1260326
c.2836G>A (p.Ala946Thr) IFH1 rs1990760
c.441-26T>C G6PC2 rs560887
IV\$4-9G>A WF\$1 rs10010131
c.973C>T (p.Arg325Trp) SLC30A8 rs13266634
c.11G>A (p.Ser4Asn) RREB1 rs116821447
c.385+7G>TBCL11A rs775429960 | | E/766 | CAPN10
CDKAL1 | e.1532C>T
e.174-9C>A | p.Ala511Val | c.1720A>G (p.Ser574Gly)HNF1A
c.67G>A (p.Glu23Lys) KCNJ11 rs5219
c.2911G>A (p.Gly972Arg) IRS1 rs1801278
c.973C>T (p.Arg325Trp)SLC30A8rs13266634 | E/1853 | | | | | | E/2085 | FAM13A
TLE4 | c.1261G>A
c.1946G>A | p.Gly421Arg
p.Arg649His | c.668A>G (p.Gln223Arg) LEPR rs1137101
c.1337T>C (pLev446Pro) GCKR rs1260326
c.2836G>A (p.Alz946Thr) IFH1 rs1990760
c.441-26T>C G6PC2 rs560887
IV84-9G>A WF81 rs10010131
c.973C>T (p.Arg325Trp) \$LC30A8 rs13266634
c.190T>C (p.Trp64Arg) ADRB3 rs4994
c.16010C>T (p.Ser5337Phe) MACF1 rs202106473
c.3905G>A (p.Arg1302His) MAP3K19 rs772898317 | 15/1356 | GCK
KCNK16 | c.898G>T
c.253_255delGGCinsA | p.Glu300Lys
p.Gly85Lysfs*51 | c.397-3C>TPPARG rs370830238
c.668A>G (p.Gln223Arg) LEPR rs1137101
c.1337T>C (p Lev446Pro) GCKR rs1260326
c.441-26T>C G6PC2 rs560887
c.973C>T (p.Arg325Trp) SLC30A8 rs13266634
c.67G>A (p.Glu23Lys) KCNJ11 rs5219
c.2069G>C(p.Ser690Thr) PCSK1 rs6235
c.499G>T (p.Ala167Ser) HADH rs370306695
c.1113+9T>C WARS rs149903755 | | ents with two | or more m | utations in differ | rent genes | c.2024G>A (p.Arg675Gln) MAP3K 19 rs141304858
c.2076G>C (p.Lys692Asn) PC8K1 rs570064523
c.409G>A (p.Val137Met) KCNK16rs147045595
c.184G>A (p.Gls:62Acg) PEPD cs748037244 | E/2179 | THADA
FTO
SLC5A2 | c.1214A>G
c.191A>G
c.1035_1062de128 | p.Asp405Gly
p.Glu64Gly
p.Val346Alafs*17 | c.668A>G (p.Gln223Arg) LEPR rs1137101
c.1337T>C (p Leu446Pro) GCKR rs1260326
c.2836G>A (p.Ala946Thr) IFH1 rs1990760
c.441-26T>C G6PC2 rs560887
IV84-9G>A WF81 rs10010131
c.973C>T (p.Arg325Trp) SLC30A8 rs13266634
c.67G>A (p.Glu23Lys) KCNJ11 rs5219
c.272G>T (p.Arg91Leu) NOTCH2 rs143195893 | # CONCLUSIONS In this study we found, in association with known heterozygous/homozygous SNPs associated with diabetes, rare and pathogenetic variants in the 66% of cases. Interestingly, in 40% of positive cases, we identified, in addition to MODY genes, two or more mutations in other different genes. These results suggest a complex aetiology of MODY, in contrast with reports that consider it caused by mutations in single genes. The advent of high-throughput sequencing (HTS) has made simpler to identify that monogenic disease could present digenic (DI) or more complex inheritance. The complexity of DI transcends the genetics. To construct a compelling proof that the inheritance is digenic rather than monogenic may require a multidisciplinary team that can apply techniques to understand the two/more genes and proteins specifically and their interaction. This approach, in formidable way, can contribute not only to a correct genetic counseling, but especially for the choice of the personalized treatment. In fact, patients with diabetes often are treated similarly, with little consideration of individual characteristics that might affect clinical outcome and therapeutic response. Our study provides a highly sensitive method for identification of variants in new causative genes associated with diabetes and draws the best way for a tailored medicine. c.1126T>C (p.Ser376Pro) ANKRD55 rs77017041