

Magdalena Dumin MD¹, Katie O'Sullivan MD¹, Eve Van Cauter, PhD^{1,2}, Dorit Koren, MD¹

1 Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL

2 Sleep, Metabolism, and Health Center, University of Chicago, Chicago, IL

Background

- Chronotype: individual preference in timing of sleep and eating
- Late chronotype associations:

Adults:

- Higher body mass index (BMI), later mealtimes
- Higher risk incident T2DM, higher hemoglobin A1c (HbA1c)
- Greater risk of hypertension

Adolescents:

- Higher BMI, increased portion size, lower dietary restraint
- Low HDL cholesterol
- No known studies have focused on the link between sleep chronotype and insulin/glucose metabolism in children on the cusp of puberty or in

Results Continued

Table 3: Baseline sleep and chronotype data.

	NW (5)	OB (5)	P-value
Time in Bed (TIB)	8.34 ± 0.98	8.91 ± 1.04	0.43
Total Sleep Time (TST)	8.34 ± 0.98	8.91 ± 1.04	0.43
Wake Time	06:34 ± 0.32	07:14 ± 1.15	0.25
Bed Time (HS)	22:10 ± 0.83	22:26 ± 1.23	0.71
Sleep Efficiency	92.08 ± 2.78	86.61 ± 3.78	0.04*
WASO	19.23 ± 4.33	32.9 ± 12.84	0.03*
MSF (actigraphy)	02:37 ± 0.93	03:11 ± 0.89	0.40
CCTQ MSF	02:36 ± 0.55	03:24 ± 1.52	0.30
CCTQ CT score	80% morning, 20% evening	60% morning, 40% evening	0.72
CCTQ M/E score	25.2 ± 4.27	28.6 ± 8.68	0.46
CCTQ chronotype	40% morning, 60% neutral	40% morning , 20% neutral, 40% evening	0.22
MESC score	32.8 ± 6.3	34.8 ± 5.5	0.61
MESC chronotype	80% morning, 20% neutral	80% morning, 20% neutral	1.0

early puberty stages.

Objective/Hypothesis

- <u>Objective</u>: To examine the associations between chronotype and risk factors for type 2 diabetes in normal-weight (NW) and obese (OB) children ages 10-13 years.
- <u>Hypothesis</u>: Late chronotype associates with increased insulin resistance and reduced glucose tolerance in preadolescents.

Design/Methods

Table 1.

Inclusion Criteria	Exclusion Criteria
 Age 10-13 yo BMI > 95th %ile for age and sex (OB) Normoglycemic: Fasting glc <100, 2-hr glc <140, HbA1c <5.7% Prediabetic: Fasting glc 100-125, 2-hr glc 140-199, HbA1c 5.7-6.4% BMI 5-85th %ile for age and sex (NW) Normoglycemic: Fasting glc <100, 2-hr glc <140, HbA1c <5.7% 	 Known type 1 or 2 diabetes Known sleep disorders Conditions affecting sleep or glycemia Medications impacting sleep, insulin sensitivity, or weight Pregnancy

Values represent number (%), mean ± SD; *=p<0.05, **=p<0.01

Table 4: Sleep characteristics and metabolic outcome correlations.

	Weight (kg)	BMI (kg/m2)	HbA1c	HOMA-IR
MSF (act)	0.357 (0.35)	0.206 (0.60)	0.500 (0.17)	0.155 (0.72)
CCTQ MSF	0.624 (0.054)	0.401 (0.25)	0.629 (0.052)	0.585 (0.098)
CCTQ CT score	0.168 (0.64)	0.146 (0.69)	0.637 (0.047)*	0.231 (0.55)
CCTQ M/E score	0.587 (0.07)	0.389 (0.27)	0.746 (0.01)*	0.613 (0.08)
MESC score	0.107 (0.77)	0.234 (0.52)	-0.752 (0.01)*	0.144 (0.71)
HS (all)	0.285 (0.46)	0.023 (0.95)	0.790 (0.01)*	0.085 (0.84)
HS weekdays (WD)	0.187 (0.66)	-0.096 (0.82)	0.900 (0.002)**	0.043 (0.93)
HS weekends (WE)	0.048 (0.90)	-0.108 (0.78)	0.662 (0.052)	-0.243 (0.56)
TIB (all)	0.112 (0.77)	0.281 (0.46)	-0.839 (0.005)**	0.256 (0.54)
TIB (WD)	0.016 (0.97)	0.270 (0.52)	-0.795 (0.02)*	0.179 (0.70)
TIB (WE)	-0.085 (0.83)	-0.012 (0.98)	-0.842 (0.004)**	0.080 (0.85)
TST	-0.356 (0.37)	-0.205 (0.60)	-0.567 (0.11)	-0.185 (0.66)
Sleep efficiency	-0.444 (0.23)	-0.520 (0.15)	0.156 (0.69)	-0.345 (0.40)
WASO	0.387 (0.30)	0.666 (0.05)	-0.350 (0.36)	0.376 (0.36)

*=p<0.05, **=p<0.01

Relationship between Weekday Bedtime and HbA1c

		1
		NW vs. Obese
0-	R ² Linear = 0.81 p=0.002	ONormal-weigh Obese

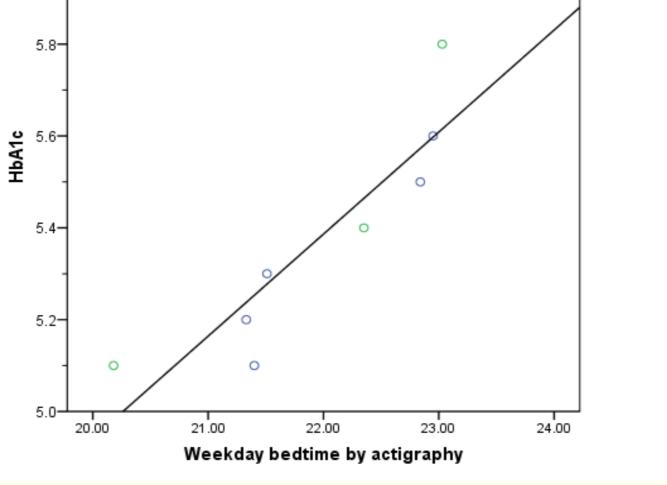
Relationship between time spent in bed and HbA1C		
	NW vs. obes	
	Ohono	

R² Linear = 0.705

p=0.005

• Mid-sleep time on free days (MSF), a measure of chronotype, was assessed via 1-week actigraphy and administration of Children's ChronoType Questionnaire (CCTQ) and Morningness-Eveningness Scale for Children (MESC).

Figure 1.


Sleep actigraph, food and

sleep diary collection via

Fedex mailing

- Medical history
- Physical examination (Urine HCG and serum
- progesterone)
- Anthropometric measurements
- Actigraphy watch and hand-out
- Sleep questionnaires (CCTQ, MESC)
- PAQ-C activity questionnaire
- OSA screening (PSQ-SRDB)
- Food and sleep diary hand-outs
- MacArthur Network Sociodemographic Questionnaire
- Fasting bloodwork (HbA1c, plasma glucose, insulin, C-peptide, lipid panel)
- OGTT (obese nondiabetic and prediabetic)

Results

Figure 2: Later overall (r=0.624, p=0.011) and weekday (r=0.81, p=0.002) bedtimes positively associated with HbA1c.

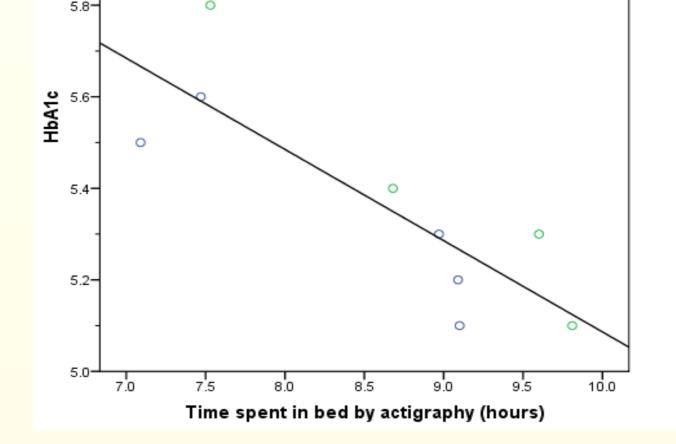


Figure 3: Overall time in bed negatively associated with HbA1C (r=0.705, p=0.005).

Discussion

- Sleep parameters similar between NW and OB.
- No significant associations between MSF by actigraphy and anthropometric or metabolic outcomes.
- HbA1c positively associated with:
- Preliminary fndings suggest:
- late chronotype in preadolescents may have a deleterious glycemic impact independent of bedtime duration
- advancing bedtimes may reduce glucose levels and lower risk of type

Table 2: Demographic, anthropometric, and metabolic characteristics.

	NW (5)	OB (5)	P-value
Age (yrs)	11.52 ± 0.65	11.33 ± 0.4	0.92
Sex	20% female; 80% male	80% female, 20% male	0.058
Race	40% AA; 60% Caucasian	40% AA; 20%Caucasian; 40% unknown	0.22
Ethnicity	100% not Hispanic	40% Hispanic; 60% not Hispanic	0.11
Tanner Stage	80% prepubertal	20% prepubertal	0.91
Weight (kg)	34.99 ± 3.08	68.93 ± 12.18	0.003**
BMI (kg/m2)	17.32 ± 1.3	29.88 ± 2.84	<0.005**
BMI z-score	-0.2 ± 0.7	2.2 ± 0.29	<0.005**
Waist Circ (cm)	59.49 ± 3.2	97.52 ± 9.28	<0.005**
Systolic BP	105.4 ± 7.67	115.8 ± 9.91	0.10
Diastolic BP	62.8 ± 7.67	56.0 ± 4.53	0.13
FPG (mg/dL)	89.2 ± 6.69	90.2 ± 7.79	0.83
FPI (ul/mL)	4.22 ± 2.6	20.89 ± 6.44	0.002**
HbA1c (%)	5.34 ± 0.21	5.46 ± 0.29	0.47
HOMA-IR	0.93 ± 0.61	4.7 ± 1.66	0.004**

Values represent number (%), mean \pm SD; *=p<0.05, **=p<0.01

- higher CCTQ chronotype score
- lower MESC score
- overall time in bed
- later bedtimes overall and on weekdays
- Later weekday bedtime predicted a higher HbA1c independently of time spent in bed.

2 diabetes in preadolescents

- Limitations of this study include:
- small sample size
- potential poor compliance with actigraphy and sleep diaries
- potential actigraphy malfunction
- wide variation in sleep patterns in preadolescents.

References

- Arora T, Taheri S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int J Obes. 2015;39(1):39-44.
- Chung K-F, Kana KK-K, Yeung W-F. Sleep duration, sleep-wake schedule regularity, and body weight in Hong Kong Chinese adolescents. Biological Rhythm Research. 2013;44(2):169-79.
- Culnan E, Kloss JD, Grandner M. A prospective study of weight gain associated with chronotype among college freshmen. Chronobiology international. 2013;30(5):682-90.
- Fleig D, Randler C. Association between chronotype and diet in adolescents based on food logs. Eating behaviors. 2009;10(2):115-8.
- Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL, et al. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes care. 2013;36(9):2523-9.
- Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Annals of the New York Academy of Sciences. 2014;1311:151-73.

Study supported by Endocrine Fellows Foundation and University of Chicago Institute of Translational Medicine. No disclosures.

