

# **P1-P051**

# **Identification of six novel mutations in monogenic diabetes and congenital** hyperinsulinism detected by targeted-exome sequencing in Korea

Chong Kun Cheon, Ju Young Yoon

Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea

## Introduction

- Monogenic diabetes and congenital hyperinsulinism (CHI) and are common disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI.
- Genetic testing for monogenic diabetes and CHI is important for patient care.

# **Materials and Methods**

- Nine probands and their family members (7 monogenic) diabetes and 2 CHI) were included. We conducted TES in 7 clinical CHI and monogenic diabetes families to identify genetic variants in Korea.
- Variants in the dbSNP135 and TIARA databases for the variants with allele Koreans and minor

### **Objectives**

• The aim of this study was to delineate genetic and clinical manifestations of monogenic diabetes and CHI diagnosed by targeted-exome sequencing (TES).

frequencies >0.5% of the 1000 Genomes database were excluded.

- We selected only the functional variants and conducted a case-control comparison in the family members.
- The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism

### Results

Among the 5 patients with suspected maturity-onset diabetes of the young (MODY), 2 different MODY were identified in the three patients, and the diagnostic yield was 60%. We identified two novel mutations [C.1088C>T (Ala363Val) and c.1127T>C (Met376Thr)] in HNF4A gene causing MODY1. All the novel HNF4A mutation carriers were successfully transferred from insulin to sulfonylurea. A novel splicing mutation [c.538+8G>C] in PAX4 gene was identified in a family with MODY9. A novel PAX4 mutation carrier had a good clinical response when switched from insulin to diet. We also identified a novel variant in potentially candidate gene implicated in susceptibility to diabetes, albeit thus far not in an autosomal dominant mode of inheritance: NOTCH2. One of two families with neonatal diabetes showed a compound heterozygous mutation, c.2978C>A (Ala993Asp) and C.356C>T (Ala119Val), the latter of which is a novel mutation, in *INSR* gene who required metformin treatment. The other one showing persistent neonatal diabetes had a missense mutation, c.605G>A (Arg201His), which is a reported mutation, in KCNJ11 gene, who required sulfonylurea such as glibenclamide. In two families with CHI two novel heterozygous mutations was identified: c.4237C>T (Pro1413Ser) and c.905C>T (Thr302Ile), the former of which is associated with diazoxide responsive CHI, the latter is related to diazoxide non-responsive CHI in terms of clinical courses among the patients (Table).

#### Table. Mutational and clinical characterization identified by TES and confirmed by Sanger sequencing in patients with monogenic diabetes/CHI

| Disease<br>category | Proband    | Sex | Age at Dx | Gene   | Nucleotide/Amino<br>acid change                                   | Treatment                   | Novelty                                                                                 | Initial Hb<br>A1c | Initial<br>c-pep tide<br>(ng/ml) | Note                                                                       |
|---------------------|------------|-----|-----------|--------|-------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|-------------------|----------------------------------|----------------------------------------------------------------------------|
| Neonatal<br>DM      | <b>K</b> 1 | Μ   | 8M        | KCNJ11 | c.[605G>A]<br>(p.[Arg201His])                                     | Glibenclamide               | REPORTED                                                                                | 8.6%              | 0.37                             | Persistent DM                                                              |
| Neonatal<br>DM      | K2         | F   | 7M        | INSR   | c.[356C>T]<br>(p.[Ala119Val];<br>c[.2978C>A]<br>(p.[Ala993Asp])   | Metformin                   | NOVEL<br>(A993D:SIFT=0.02,<br>POLYPHEN2=0.978)                                          | 6.8%              | 28.60                            | RMS, MNC                                                                   |
| CH                  | K3         | F   | 48D       | ABCC8  | c.[4237C>T]<br>(p.[Pro1413Ser])                                   | Diazoxide                   | NOVEL<br>(SIFT=0.0<br>POLYPHEN2=0.098)                                                  | 5.0%              | 1.74                             | Diazoxide responsiv<br>e→ discontinued the<br>treatment after 6 mo<br>nths |
| СН                  | K4         | F   | 33D       | KCNJ11 | c.[905C>T]<br>(p.[Thr302Ile])                                     | Diazoxide→<br>Sandostatin   | NOVEL<br>(SIFT=0.00<br>POLYPHEN2=1.00                                                   | 4.8%              | ND                               | Diazoxide nonrespo<br>nsive                                                |
| MODY1               | K5         | M   | 23y       | HNF4A  | c.[1088C>T]<br>(p.[Ala363Val]);<br>c.[1127T>C]<br>(p.[Met376Thr]) | Lantus+Metformin→<br>Amaryl | NOVEL<br>(A363V:SIFT=0.02,<br>PLYPHEN2=0.236)<br>(M376V: SIFT=0.02,<br>POLYPHEN2=0.236) | 7.8%              | 7.00                             | Metabolic syndrom<br>e, steatohepatitis                                    |
| MODY9               | K6         | M   | 15Y       | PAX4   | c.538+8G>C                                                        | Lantus+Humalog→<br>Diet     | NOVEL                                                                                   | 10.7%             | 0.95                             | DKA                                                                        |

DM, diabetes mellitus; Dx, diagnosis; M, male; F, female; D, days; M, months; CH, congenital hyperinsulinism; RMS, Rabson-Mendenhall syndrome; MNC, medullary nephrocalcinosis; MODY, Maturity onset diabetes of the young; DKA, diabetic ketoacidosis; ND, not done

Conclusions

• TES can be useful for screening for monogenic diabetes/CHI mutations. Given the extensive genetic and clinical heterogeneity of monogenic diabetes, TES might provide additional diagnostic potential.

## References

- Szopa M, et al. Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young. Pol Arch Med Wewn 2015;125(11):845-851
- Alkorta-Aranburu G, et al. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 2014;113(4):315-320



