

Triglyceride glucose index as a predictor of impaired glucose tolerance in overweight and obese adolescents

Voraluck Phatarakijnirund¹, Chula Kooanantkul², Warissara Sanor¹, Nawaporn Numbenjapon¹, Pacharin Mungklarat¹

¹Division of Endocrinology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine, ²Kids Center, Vejthani Hospital

Introduction

 Triglyceride glucose (TyG) index is a product of fasting triglyceride and glucose as formula:

Ln [fasting triglyceride (mg/dL) x fasting glucose (mg/dL)/2]

- It was widely used as an alternative marker for identifying insulin resistance in adults but not in children.
- Recent study in children showed association between the TyG index and HOMA-IR and a usefulness of TyG index as a surrogate

Results

- The patient was divided to 2 groups: normal glucose tolerance or NGT (N = 163) and IGT (N = 37) group.
- Age, fasting blood glucose, HbA1C and TyG index were significantly higher in IGT than the NGT group. (Table 1)
- The TyG index was 8.27 ± 0.43 and 8.54 ± 0.58 in NGT and IGT, respectively (p 0.001). The area under the receiver operating characteristics (ROC) curve for TyG index and IGT was 0.648.
- In subgroup analysis of patients age > 13 years, the optimal cut-

marker of insulin resistance among adolescents.

Objective

- Evaluated the potential role of the TyG index as a predictor of impaired glucose tolerance among overweight and obese children and adolescents.
- Identified the cutoff values of TyG index for diagnosis of abnormal glucose tolerance test.

Material and method

Design: Retrospective study.

Setting: Department of Pediatric, Phramongkutklao Hospital, Bangkok, Thailand.

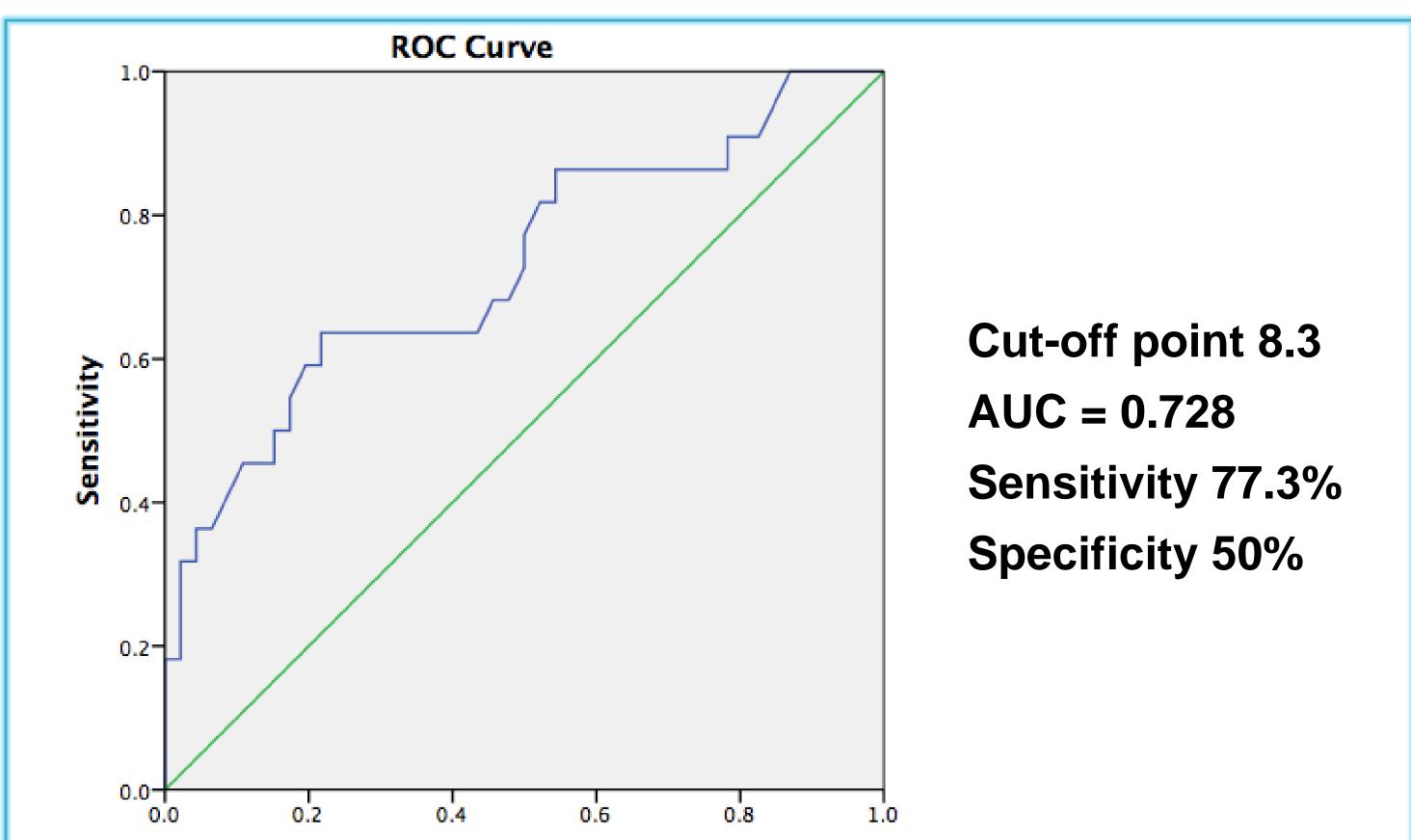
Subjects: Overweight and obese children and adolescent age 6-20 years who underwent clinical examination, fasting blood testing and oral glucose tolerance test (OGTT) from January 2002 to December 2016.

Exclusion criteria:

off of the TyG index for diagnosis of impaired glucose tolerance was 8.3. The area under the ROC curve was 0.728 (95% confidence interval: 0.593 - 0.864) (Figure 1) and represent sensitivity of 77.3% and specificity of 50%.

Table 1: Baseline characteristics of the study subjects

Parameters	NGT (N = 163)	IGT (N = 37)	p-value
Age (yr)	11.8 ± 2.6	13.0 ± 2.5	0.02
BMI (kg/m ²)	30.7 ± 4.7	31.9 ± 6.3	0.26
BMISDS	2.3 ± 0.3	2.2 ± 0.4	0.72
Fasting blood glucose (mg/dL)	79.6 ± 6.6	83.8 ± 10.9	0.03
HbA1C (%)	5.5 ± 0.6	5.7 ± 0.4	0.02
Fasting insulin (mIU/L)	21.1 ± 15.4*	24.3 ± 15.8	0.26
HOMA-IR	4.0 ± 2.9*	5.4 ± 3.6	0.06
Triglyceride (mg/dL)	108.6 ± 56**	145.5 ± 118.0	0.07
Total cholesterol (mg/dL)	176.2 ± 32.3**	186.6 ± 37.1	0.09
LDL (mg/dL)	113.8 ± 29.1**	118.6 ± 39.2	0.40
HDL (mg/dL)	48.0 ± 11.1**	44.2 ± 10.1	0.06
AST (U/L)	25.9 ± 17.2¶	27.4 ± 13.3	0.61
ALT (U/L)	31.6 ± 34.7¶	39.8 ± 31.3	0.20
TyG index	8.27 ± 0.43**	8.54 ± 0.58	0.001


- Syndromic and hypothalamic obesity.
- Genetic disorder.
- Endocrine disorders: hypothyroidism, Cushing syndrome, growth hormone deficiency and hypopituitarism.
- Steroid use.

Study protocol:

- Fasting blood (> 8 hours) was analyzed for serum biochemistries by automated chemiluminescence assay using Cobas® e801 autoanalyzer.
- Impaired glucose tolerance was defined as 2-hour glucose levels of 140 to 199 mg/dL on the 75-gm OGTT.
- Homeostatic Model Assessment (HOMA) was calculated by [fasting insulin (mIU/L) x fasting glucose (mg/dL)] /405
- Main Outcome Measures: TyG index
- Statistical Analysis: All categorical data are expressed as percent (%) and continuous data are mean <u>+</u> standard deviation (SD) and range. Data were analyzed using independent T-test. Receiver operating characteristic (ROC) curves were constructed and the area under the curve (AUC) was calculated to assess the

Data were shown as mean \pm SD, * N = 159, ** N = 161, N = 158.

Abbreviations: BMI: body mass index, HOMA: homeostasis model assessment, LDL: low-density lipoprotein cholesterol, HDL: high-density lipoprotein cholesterol, AST: aspartate transaminase, ALT: alanine transaminase, TyG: triglycerides/glucose index..

clinical aptitude of the TyG index. Analyses were performed using the IBM SPSS statistics version 22 and p < 0.05 was considered statistically significant.

Results

- A total of 203 children and adolescents (122 males and 81 females) were included to our study.
- Mean age was 12.04 <u>+</u> 2.61 years (range 6.06-18.65) and BMI Zscore was 2.24 <u>+</u> 0.34 (range 1.41-3.01). One hundred and fiftyone children (74.4%) were obese.
- Two (1%) had type 2 diabetes and 38 (18.7%) had pre-diabetes: 1(0.5%) with impaired fasting glucose (IFG), 34 (16.7%) with impaired glucose tolerance (IGT) and 3 (1.5%) with IFG and IGT.

1 - Specificity

Figure 1: Receiver operating characteristic curves of TyG index for diagnosis of impaired glucose tolerance in patients age > 13 years

Conclusion

The TyG index is a simple parameter to use as a surrogate marker of impaired glucose tolerance in overweight and obese children age \geq 13 years compared with oral glucose tolerance test.

References:

- 1. Kang B, Yang Y, Lee EY, et al. Triglycerides/glucose index is a useful surrogate marker of insulin resistance among adolescents. Int J Obes (Lond). 2017;41(5):789-92.
- 2. Mohd Nor NS, Lee S, Bacha F, et al. Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: comparison with the hyperinsulinemic-euglycemic clamp. Pediatr Diabetes. 2016;17(6):458-65
- 3. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299-304.

