SJD Sant Joan de Déu Barcelona · Hospital

Brown adipose tissue in prepubertal children: association with sex and with the sequence of prenatal growth restraint and postnatal catch-up

R. Malpique¹, J. M. Gallego-Escuredo², G. Sebastiani¹, J. Villarroya³, A. Lopez-Bermejo⁴, F. de Zegher⁵, F. Villarroya², L. Ibáñez¹

¹Hospital Sant Joan de Déu & ²Universitat de Barcelona, Barcelona, Spain, ³Hospital Dr. Josep Trueta, Girona, Spain, ⁵University of Leuven, Leuven, Belgium

Introduction

Individuals born small-for-gestational age (SGA), especially those who experience postnatal catch-up growth, are at increased risk for developing endocrinemetabolic abnormalities before puberty. In adults, brown adipose tissue (BAT) has been associated with

AIM

To assess for the first time whether BAT activation differs between prepubertal children born SGA or appropriate-forgestational age (AGA).

protection against metabolic disorders, such as obesity, type 2 diabetes and dyslipidaemia.

Subjects and Methods

The study population consisted of 86 prepubertal children [41 AGA and 45 SGA; age (mean \pm SEM), 8.5 \pm 0.1 yr], recruited into two prospective longitudinal studies. The temperature at the supraclavicular region (SCR) before and after a cold stimulus was measured by infrared thermal imaging, and the area of thermally active SCR (increase after cold challenge, Δ Area_{SCR}) was calculated as a surrogate index of BAT activation. The results were correlated with clinical, endocrine-metabolic and inflammation variables, and with visceral and hepatic adiposity (assessed by Magnetic Resonance Imaging).

Results

Change in the surface area of the thermally active supraclavicular region (ΔArea_{SCR})

Association between ΔArea_{scR} and clinical, endocrine-metabolic and abdominal fat results

* P <0.05 for the interaction birth weight group x gender group from a general linear model

- Cold-induced increase in $\Delta Area_{SCR}$ did not differ significantly between AGA and SGA children .

	AArea_{sce}	
	β	Р
Endocrine-Metabolic Variables		
Glucose (mg/ <u>dL</u>)	-0.325	0.008
Insulin (mIU/mL)	-0.341	0.003
HOMA-IR	-0.348	0.002
IGF-I (ng/mL)	0.112	0.313
HMW adiponectin (mg/L)	0.058	0.667
SHBG (nmol/L)	-0.189	0.133
Inflammation markers		
Hepatocyte growth factor (pg/mL)	-0.244	0.055
us-CRP (µg/L)	-0.418	<0.0001
Abdominal MRI		
Liver volume (mL)	-0.301	0.006
Liver fat (%)	-0.240	0.007
Visceral fat (cm ²)	-0.194	0.077
Subcutaneous fat (cm ²)	-0.243	0.034

 After cold induction, AGA girls significantly increased the ΔArea_{SCR} as compared to AGA boys; this response was not observed in SGA girls vs SGA boys.

Cold-induced ΔArea_{SCR} negatively correlated with HOMA-IR, us-CRP, liver volume and liver fat.

Conclusions

- BAT activity is similar in prepubertal AGA and SGA children.
- As compared to SGA girls, prepubertal girls born AGA appear to have a surplus of BAT vs their gender counterparts, that is inversely related to central (ectopic) adiposity.
 Int J Obes 2018 (in press)

 150--P2
 Fat, metabolism and obesity

 Poster presented at:
 Fat, metabolism and obesity

 Rita Malpique
 Rita Malpique