P2-P208

We have nothing to disclose

A Novel, Synonymous, Heterozygous, Splicing Variant Affecting the Intracellular Domain of the Growth Hormone Receptor: Causality for Mild Growth Impairment and IGF-I deficiency in an Affected Patient? Alexandra Efthymiadou¹, Anastasios D Papanastasiou², Ioannis K. Zarkadis², Vivian Hwa³, Dionisios Chrysis¹

¹ Department of Pediatrics, Division of Endocrinology, Medical School, University of Patras, Patras, Greece, ² Department of Biology Medical School, University of Patras, Patras, Greece, ³ Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati **College of Medicine, Cincinnati, OH, USA.**

Abstract	Methods:	DNA sequencing, Fibroblast culture, RNA isolation, cDNA production, PCR.			
Introduction: Although the majority of Growth Hormone insensitivity syndrome (GHIS) cases are classical, the spectrum					
of clinical phenotypes has expanded to include "atypical" GHIS subjects with milder phenotypes due to very rare heterozygous		esults		Heterozygous GHP	Rc.945G>A mutation
GHR mutations with dominant negative effects. Case			Signal	Extracellular	TM Intracellular

description: A 13 year old pubertal boy was presented with short stature (-1.7SD) and delayed bone age (11 6/12). Final adult height was -1.8 SD, 3SD below his mid-parental height (+1.27SD). His serum IGF-I was low (16ng/ml; reference range; 179-540) with low IGFBP-3 (1.3mg/L; 3.1-9.5), and ALS (565mU/ml; 1500-3500). GH stimulation test was normal, and GHBP, increased (6300pmol/L; 240-3000). Methods: The GHR gene analyzed was from genomic DNA. Primary fibroblasts were established to evaluate GHR cDNA. Results: A novel synonymous heterozygous GHR:c.945G>A variant in exon 9 (encoding part of the intracellular domain of GHR) was identified. GHR c.945G is the last nucleotide in exon 9 and a substitution from G to A could alter the donor splice site at the junction of exon 9-intron 9. Analysis of the GHR cDNA undertaken revealed heterozygous excision of exon 9 sequences, consistent with GHR c.945G>A being a splicing defect. The loss of exon 9 generates a predicted truncated GHR protein identical to the dominant-negative heterozygous c.945+1G>A variant reported by lida et al (JCEM, 2008). **Conclusion:** We describe the first synonymous heterozygous GHR splicing variant in the intracellular domain of GHR associated with mild short stature and very low IGF-I, thus supporting the continuum of genotype, phenotype and biochemistry of GHIS.

Case description

13 yo boy with short stature. Frontal bossing, short neck, Pubertal (8ml testes).

Age	Height SD	Bone Age	Target Height SD	Short for his MPH - 27SD
13,06	-1,7	11 9/12	1,05	
				Basal GH: 2.1ng/ml

ALS mU/ml IGFBP3 mg/L GHBP pmol/L IGF-I ng/ml Height SD Bone Age 13,06 -1,7 16 (179-540) 565 (1500-3500) 1,3 (3.1-9.5) 6300 (240-3000) 11 9/12 17,7 -1,9 0,68 20 392

Max stimulated GH: 11.9ng/ml

Potential splicing events: (1) Exon 9 spliced out: predict p.lle293Lysfs*4 (2) Read-through into intron 9: predict p.Glu316Valfs*6

Exon 8 and 9

cDNA analysis: GHR fl allele carries exon 9 GHR d3 allele lacks exon 9

The mutation causes heterozygous frameshift at exon 9–10 junction with premature stop at codon 278

Proband

- Excision of Exon 9 would result in a predicted truncated GHR, p.Ile293Lysfs*4
- The truncated product is likely to act in a dominant-

negative manner, similar to the previously reported

heterozygous c.945+1G>A (lida et al, JCEM,

2008), where probands and affected mother had

HtSDS -2 to -3.5.

Dominant-negative

We describe the first synonymous heterozygous GHR splicing variant in the intracellular domain of GHR associated with mild short stature and very low IGF-I, thus supporting the continuum of genotype, phenotype and biochemistry of GHIS.

