NKX2-2 human mutation causes neonatal diabetes followed by severe infantile obesity associated with paradoxical upregulated ghrelin levels – do beta-cells secrete ghrelin?

Adi Auerbach¹, Amitay Cohen², Eran Lavi¹, Ariella Weinberg Shokrun^{3,4}, Ephrat Levy-Lahad^{3,4}, Rina Hemi⁵, Abulibdeh Abdulsalam ¹ and David Zangen^{1,4} 1Division of pediatric endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel, 2 Pediatric department, Hadassah Hebrew University Medical Center, Jerusalem, Israel. 3 Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel. 4 Hebrew University, Hadassah Medical School, Jerusalem, Israel. 5 Institute of Endocrinology, Chaim Sheba Medical Center, Ramat-Gan, Israel.

Background:

*NKX2-2 gene mutation was only once reported (3 cases worldwide) as a cause of neonatal diabetes⁽¹⁾.

*Beta-cells of Nkx2-2 (-/-) mice were recently shown to convert into cells producing ghrelin instead of insulin ⁽²⁾ (figure 1). *Classically, ghrelin secretion is stimulated during fast and suppressed by nutrients (glucose) ingestion in all age groups. *In obese children OGTT causes up to 40% suppression in serum ghrelin levels 60 minutes following glucose ingestion⁽³⁾.

Figure 1: A schematic illustration of NKX2-2 role in pancreatic cells differentiation. NKX2-2 is a member of the NK2 class of homeodomain transcription factors which plays a critical role in the differentiation of most types of cells within the pancreatic islet. Only Ghrelin (in red) producing cells are not depended on Nkx2.2 expression.

Objective:

To characterize the rare clinical phenotype of a patient homozygous for the c.356delG (p.P119fs64*64*) NKX2.2 mutation and examine the ghrelin response to OGTT in this patient

Clinical characteristics and laboratory tests:

A 3.5 years old girl with NKX2-2 mutation born very small for gestational age (1080g at 38 weeks) with a challenging neonatal diabetes and developmental delay developed severe obesity since 1y of age (figure 2) and at 3.5 y of age weighed 19.5Kg (BMI SDS +4.32). During a standard OGTT (1.75 gr/kg) - Glucose, insulin and total ghrelin levels were measured at 0,30,60 minutes time points. Ghrelin levels were compared to reported data⁽⁴⁾ of healthy obese and non obese prepubertal children and to our data of age matched healthy children.

Results:

During the OGTT-while glucose increased from 19.4 mmol/l at baseline to 30.8 mmol /l after 60 minutes insulin levels dropped from 101.36 pmol/l to 31.11 pmol/l with constantly undetectable C- peptide levels. Interestingly, total ghrelin levels paradoxically increased from 303.3 Pmol/II at baseline (similar to baseline values in obese children) to 404.7 pmol/l after glucose ingestion (table 1 A, B).

Table 1A: Ghrelin and insulin levels during OGTT. 1B: Ghrelin change during OGTT

1A Time	Glucose (mmol/L)	Insulin (pmol/L)	C-peptide (pmol/L)	Total Ghrelin (pmol/l)	Father Ghrelin (pmol/l)	Mother Ghrelin (pmol/l)	Control-Age matched female) (pmol/l)	<u>1B</u>	Our patient	Normal weight prepubertal girls (Bacha F at el ⁴) (mean ± SEM)	Overweight prepubertal girls (Bacha F at el ⁴) (mean ± SEM)
								Baseline	303.3	598.9 ± 55.6	312.8 ± 36.5
0'	19.4	101.36	<43	303.3	162.9	36	295.98	(pmol/l)			
30'	24.9	57.03	<43	370.5				Absolute ghrelin change	e +101.4	-139.1 ± 12.2	-72.7 ± 16.6
60'	30.8	31.11	<43	404.7				60 min after OGTT (pmol/)		
	Conclusio	n:						%Ghrelin change 60 mi after OGTT	+33.4 n	-25.2 ± 1.8	-21.9 ± 3.4

NKX2-2 mutation phenotype includes severe early childhood obesity in addition to neonatal diabetes. During OGTT, our obese diabetic patient showed a paradoxical increase in ghrelin but no increment in insulin levels. This results suggest that human beta cells with NKX2-2 mutation- may mimic Nkx2-2 (-/-) mice's beta cells that pathologically differentiate into ghrelin instead of insulin producing cells; Thus, contributing to the clinical severe hyperphagia and obesity.

References:

(1) Flanagan et al. Cell Metab. 2014 Jan 7;19(1):146-54. (2) Prado et al .Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2924-9.

(3) Prodam F et al. J Clin Endocrinol Metab. 2014 May;99(5):1556-68. (4) Bacha F at el. J Clin Endocrinol Metab. 2005 May;90(5):2725-30.

