

METABOLIC ENDOTOXEMIA IN EGYPTIAN OBESE CHILDREN AND ADOLESCENTS

Omneya Magdy Omar¹, Marwa Ahmed Meheissen², Basma Mohamed Zaki¹, Magdy Abd El Fattah¹

¹Pediatrics Department, Alexandria University, Alexandria, Egypt ²Medical Microbiology & Immunology Department, Alexandria University, Alexandria, Egypt

Obesity is associated with metabolic abnormalities, which

Correlation between LPS and different parameters in total sample (n=50)

	L	LPS Total sample	
	Total		
	r	p	
Age	-0.190	0.185	
BMI	0.471*	0.001*	
BMI percentile	0.557*	<0.001*	
Waist circumference	0.336*	0.017*	
Hip circumference	0.336*	0.017*	
Acanthosis grading	0.261	0.067	
Systolic BP	0.243	0.089	
Diastolic BP	0.164	0.255	
TG	0.330*	0.019*	
Cholesterol	0.494*	<0.001*	
HDL	-0.058	0.691	
LDL	0.019	0.896	
Fasting glucose	0.263	0.065	
Fasting insulin	0.653*	<0.001*	
ALT	0.200	0.163	
AST	0.116	0.422	
HOMA -IR	0.601*	<0.001*	
QUICKI	0.642*	<0.001*	
hs-CRP	0.526*	<0.001*	
Frequency of junk food	0.285	0.045*	
Physical activity	0.392*	0.005*	

result to progression to insulin resistance and the metabolic syndrome. The underlying stimulus for these metabolic abnormalities in obesity is not clear, however recent evidence suggests that systemic, low level elevations of gut derived endotoxin (lipopolysaccharide) may play a role in obesity related metabolic abnormalities.

Study the metabolic endotoxemia in obese children and adolescents and its potential relation to insulin resistance, lipid profile and hs-CRP.

The study included thirty obese children and adolescents aged 5–18 years and 20 non obese children matched for age and sex as control group. Lipid profile, liver function tests, hs-CRP

r: Pearson coefficient , *: Statistically significant at $p \le 0.05$

Correlation between hs-CRP and LPS in total sample

and serum lipopolysaccaride (LPS) were done, Insulin resistance was calculated using Homeostasis model assessment (Homa-IR) and quantitative insulin sensitivity check index (QUICKI), abdominal ultrasound was done for detection of fatty liver.

The mean age in obese children was 10.23 ± 3.08 years compared to 9.15 ± 2.89 years in the control group. hs-CRP and LPS were significantly higher in obese group compared to the control. There was a significant positive correlation between serum LPS with BMI, waist circumference, TG, cholesterol, fasting insulin, HOMA- IR, hs-CRP and frequency of eating junk food. Also there was a significant negative correlation between LPS with HDL, physical activity and QUICKI.

Metabolic endotoxemia may have a role in cardio-metabolic disease risk factors associated with obesity in children and adolescents.

- **1.** Manco M, Putignani L, Bottazzo GF: Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 2010; 31:817–844.
- Cani P, Amar J, Iglesias M, Poggi M, Knauf C, Bastelica D: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–72.
- **3.** Neves AL, Coelho J, Couto L, Leite-Moreira A, Roncon-Albuquerque R, Jr. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 2013

