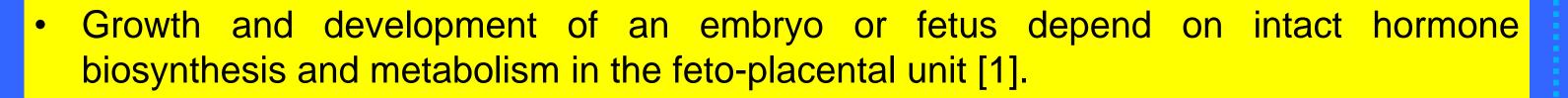
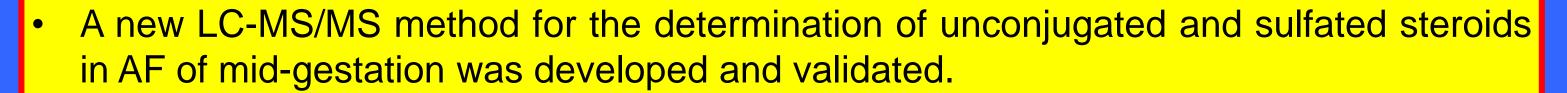
Characterizing the Steroidal Milieu in Amniotic Fluid of Mid-Gestation: ALC-MS/MS Study JUSTUS-LIEBIG-


R. Wang^a, D. Tiosano^b, A. Sánchez-Guijo^a, M. F. Hartmann^a, S. A. Wudy^a

^a Steroid Research & Mass Spectrometry Unit; Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine; Justus-Liebig-University, Giessen, Germany


^b Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel

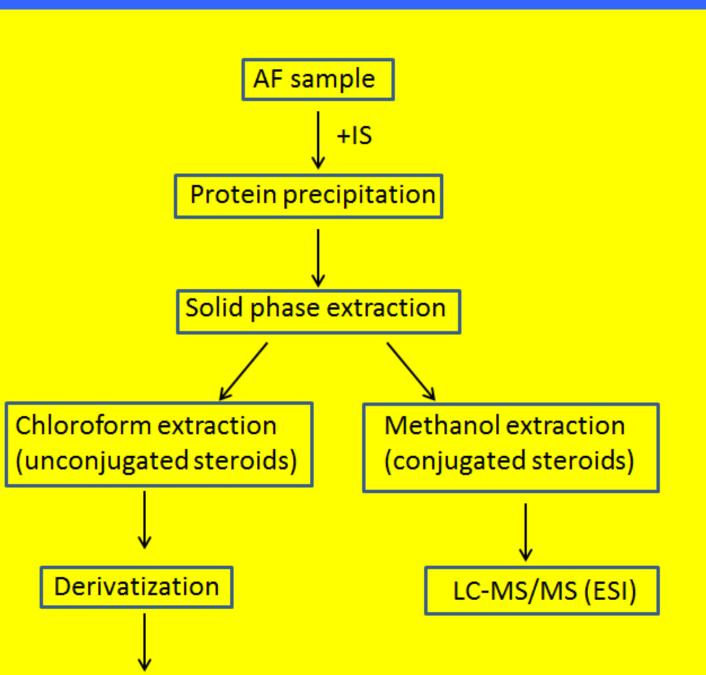
Introduction

 Most studies on steroids in AF have been carried out by immunoassays for several decades. Due to cross-reactivity of immunoassays, GC-MS and LC-MS nowadays have become the main prevalent tools for the qualitative and quantitative analysis of

Summary

LC-MS/MS based reference data of 14 sulfated and 6 unconjugated steroids in AF of mid-gestation was provided. Most steroids have been analyzed for the first time in AF of mid-gestation.

steroids [2].


Recently, studies found that with specific uptake carriers(e.g. SOAT), sulfated steroids can also enter cells as unconjugated steroids [3]. As far as we know, except for DHEAS, no other sulfated steroids have yet been quantified in AF by LC-MS/MS [4].

AIM: We therefore aimed at developing a LC-MS/MS method to simultaneously determine unconjugated and sulfated steroids in AF of mid-gestation.

Methodology

- **Instrumental equipment:**
- SL 1200 HPLC system
- TSQ Quantum Ultra (Thermo Fisher)
- Development of the method:
- Sample preparation
- LC conditions
- MS conditions
- Validation of the method:

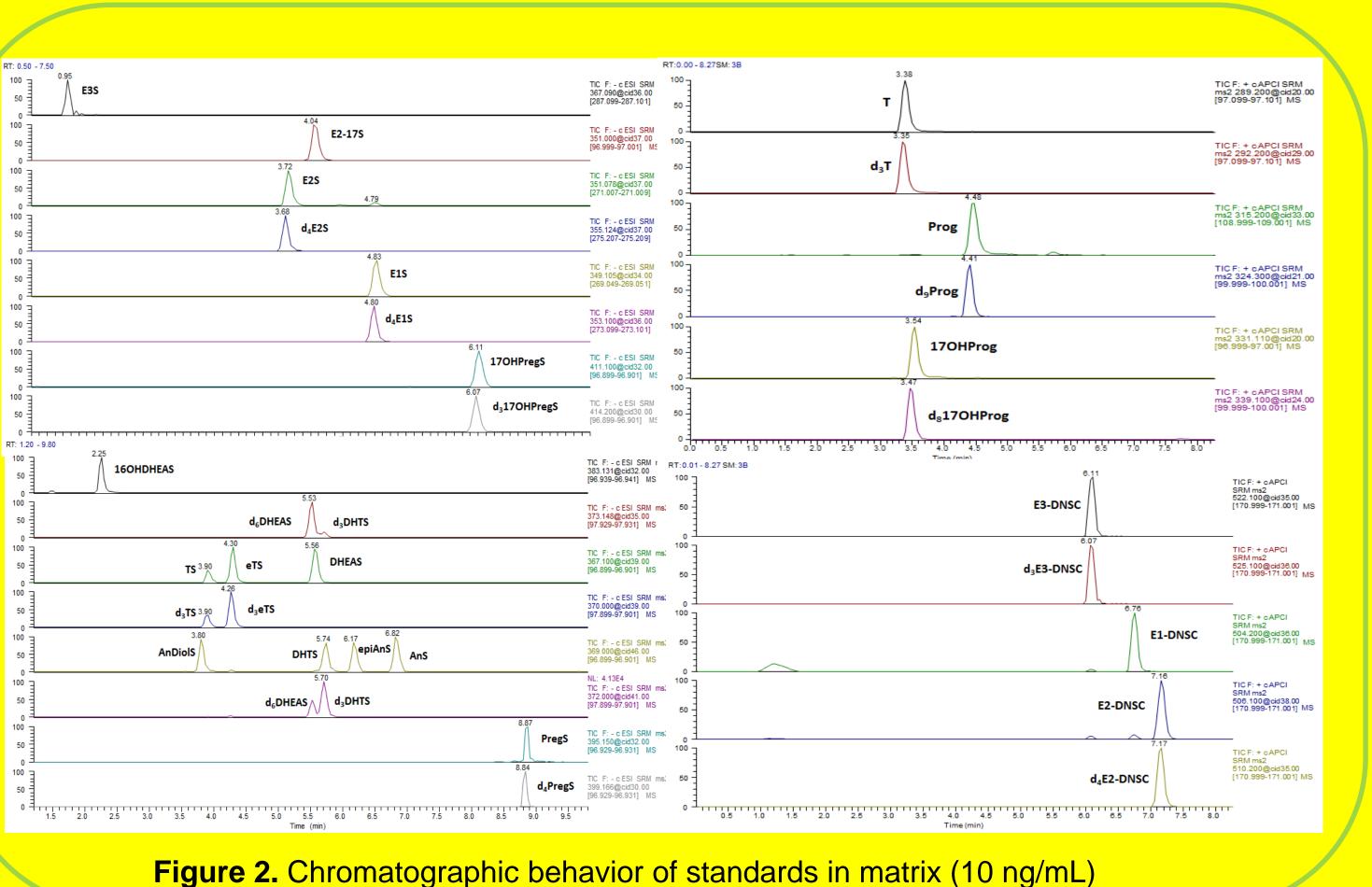
Specificity Linearity

Correlation study confirmed the classical steroid pathway and a sulfated steroid pathway in the feto - placental unit.

Results

- The levels of 14 sulfated and 6 unconjugated steroids in 65 AF samples of midgestation were measured, see Table 1.
- Only T exhibited a significant sex difference (P<0.0001).
- Strong positive correlations were found between 16OH-DHEAS and DHEAS, 16OH-DHEAS and E3S, 17OHPregS and PregS as well as E3 and E3S.

Table 1. Levels of steroids in AF of mid-gestation


C21 steroids	Concentrations (ng/mL)
	Mean±SD, median(min-max)
Prog	37.4±12.8, 33.9(16.4-78.6)
170HProg	1.0±0.3, 1.0(0.4-2.0)
PregS	8.6±3.7, 8.2(2.6-20.3)
170HPregS	4.9±2.0, 4.5(2.1-13.2)
C19 steroids	
Т	<loq -0.6<="" td=""></loq>
TS	<loq -3.9<="" td=""></loq>
eTS	7.3±3.6, 5.9(2.9-17.8)
DHEAS	4.6±2.4, 3.8(1.5-12.3)
160H-DHEAS	21.5±10.7, 19.3(6.9-62.9)

- Accuracy
- Precision
- Recovery
- Matrix effect

LC-MS/MS (APCI)

Figure 1. The workflow for sample preparation

DHTS	<loq-7.0< th=""></loq-7.0<>
AnS	9.2±7.4, 7.4(0.9-39.4)
epiAnS	<loq -2.7<="" td=""></loq>
AnDiolS	<loq -1.9<="" td=""></loq>
C18 steroids	
E1	<loq -1.3<="" td=""></loq>
E1S	<loq-25.3< td=""></loq-25.3<>
E2	<loq-0.5< td=""></loq-0.5<>
E2S	<loq -2.3<="" td=""></loq>
E2-17S	<loq -3.7<="" td=""></loq>
E3	1.2±0.4, 1.1(0.6-2.6)
E3S	8.1±4.0, 6.5(2.2-21.0)

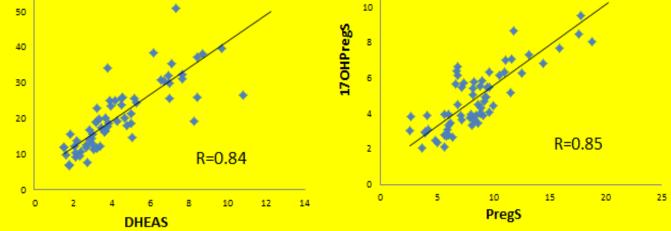
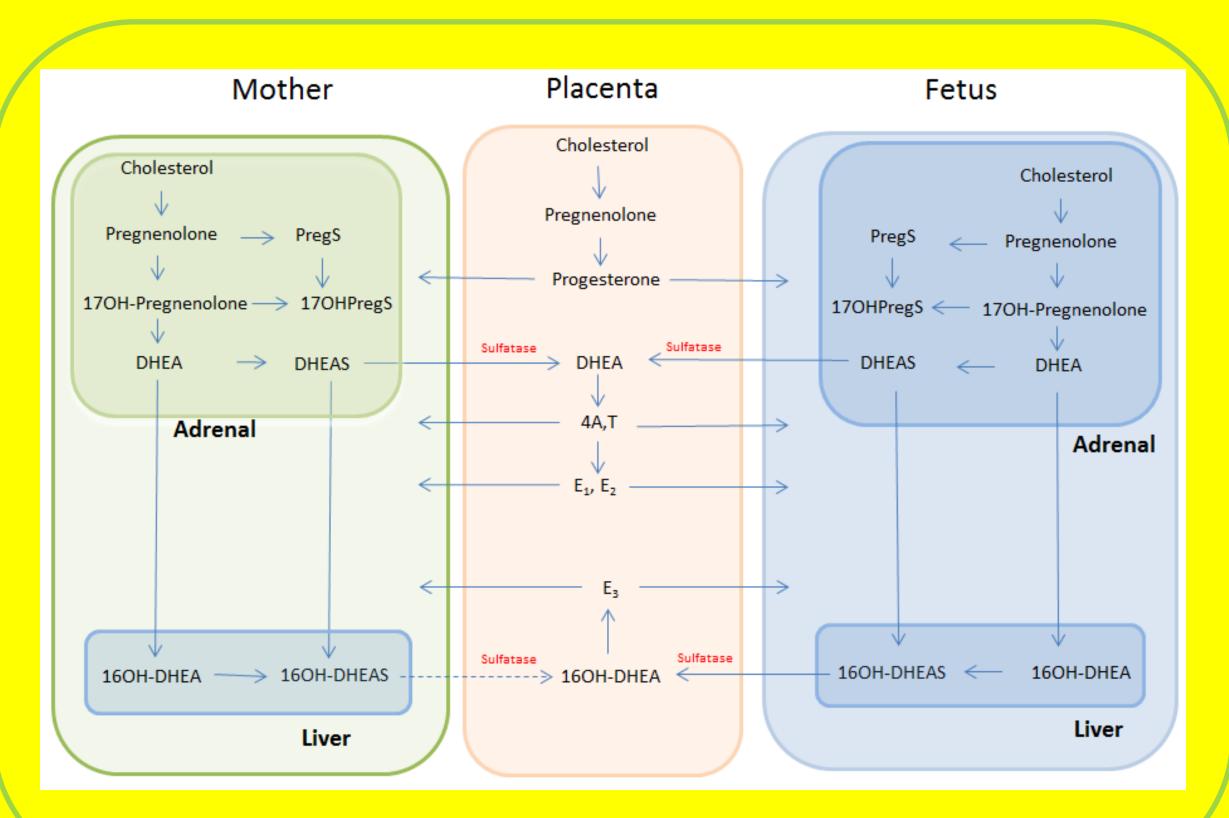



Figure 3. Pearson's correlation between steroid concentrations in AF, X axis represents the concentration for one steroid (ng/mL) and Y axis means concentration for the other steroid (ng/mL).

Discussion

Reference

[1] S.A. Wudy, H.G. DÖrr, C. Solleder, M. Djalali, J. Homiki, Profiling steroid hormones in amniotic fluid of midpregnancy by GC-MS, J. Clin. Endocrinol. Metab. 84 (1999) 2724-8.

[2] S.A. Wudy, G. Schuler, A. Sánchez-Guijo, M.F. Hartmann, The art of measuring steroids, J. Steroid Biochem. Mol. Biol. (2017) 0–1.

[3] F.B. Fahlbusch, K. Heussner, M. Schmid, R. Schild, M. Ruebner, et al, Measurement of amniotic fluid steroids of midgestation via LC – MS/ MS, J. Steroid Biochem. Mol. Biol. 152 (2015) 155–160.

[4] J. Geyer, K. Bakhaus, R. Bernhardt, C. Blaschka, Y. Dezhkam, D. Fietz, et al, The role of sulfated steroid hormones in reproductive processes, J. Steroid Biochem. Mol. Biol. (2016).

[5] A. Sánchez-Guijo, J. Neunzig, A. Gerber, V. Oji, et al, Role of steroid sulfatase in steroid homeostasis and

characterization of the sulfated steroid pathway, Mol. Cell. Endocrinol. 437 (2016) 142-153.

[6] R. Wang, D. Tiosano, A. Sánchez-Guijo, M.F. Hartmann, S.A. Wudy, Characterizing the Steroidal Milieu in Amniotic Fluid of Mid-Gestation: A LC-MS/MS Study, J. Steroid Biochem. Mol. Biol. (2018)

Figure 4. Steroid pathway in the feto-placental unit

 The fetal adrenal produces large amounts of DHEAS. Then, DHEAS is 16αhydroxylated in fetal liver to produce 16α -OH-DHEAS.

- 16 α -OH-DHEAS is the principal precursor of E3 in the placenta. In the fetal compartment, E3 is sulfated at position 3 by sulfotransferase to produce E3S.
- PregS can serve as a substrate for biosynthesis of 17OHPregS in vitro and in human males [5]. This steroidogenic pathway for sulfated steroids seems also to be present in the feto-placental unit [6].

