Novel LRP5 loss-of-function mutation causes Osteoporosis-Pseudoglioma Syndrome

D. Braslavsky¹, P. Scaglia¹, N. Sanguineti¹, H. Cassinelli¹, O. Ruiz Schenstrom¹, M. Aza-Carmona^{2,3,4}, C. Arberas⁵, J. Nevado-Blanco^{2,3}, PD. Lapunzina-Badía^{2,3,4}, KE. Heath^{2,3,4}, R. Rey¹, I. Bergadá¹.

¹ Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)

CONICET-FEI-División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez" Buenos Aires, Argentina.

²Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, IdiPAZ, Madrid, Spain.

³CIBERER, Biomedical Research Center in Rare Diseases Network, ISCIII, Madrid, Spain. ⁴Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain. ⁵Servicio de Genética, Hospital de Niños "Ricardo Gutiérrez" Buenos Aires, Argentina.

Background

- Steoporosis is a complex disorder, characterised by low bone mass and microarchitectural bone deterioration, influenced by both environmental and genetic factors.
- Y Primary osteoporosis in children is a rare early onset disorder with high morbidity and mortality.
- \checkmark The treatment currently available is symptomatic, with a variable response from child to child.
- ✓ The knowledge of the underlying pathophysiological mechanisms enables the development of new therapies.

 \checkmark Wnt signaling pathway has been shown to be involved in the regulation of bone remodeling.

Retinal

Retinal folds

detachment

 \checkmark LRP5 is a single-span transmembrane protein required for Wnt/ β catenin signaling pathway, relevant for fetal and postnatal osteogenesis.

Case Report

- Native Argentinean boy born from a consanguineous family.
- Delivered at term, birth weight 2900 g (-0.95 SDS), birth length 50.5 cm (0.06 SDS), microcephaly (-1.93 SDS).
- Bilateral congenital retinal folds caused him progressive irreversible vision loss and acquired microphthalmy.
- Since the age of 5 y he suffered four low trauma long bone fractures and two vertebral fractures.
- **Physical examination** when referred at 8.6 y:
- Weight 27kg (50th Pc), height 129 cm (50th Pc), normal growth velocity, Tanner stage I. Microcephaly, bulky vision, white sclera, normal teeth, absence of hyperlaxity, slight kyphosis and adequate neurodevelopment were observed.
- Bone metabolism markers fell within normal range calcium 10.3 mg/dL; phosphate 4.9 mg/dL; magnesium 1.9 mg/dL; ALP 195 IU/L; bone ALP 61.5 ng/L; PTH 54 pg/ml; 25OH vitamin D 24 ng/ml; CTX 1231 pg/ml; urine Calcium/Creatinine ratio 0.2; PTR 91%.
- Known secondary causes of osteoporosis were ruled out.
- **Dual-energy X-ray absorptiometry (DXA)** Total body -3.9 SDS.

Family History: No history of fractures, parents have normal BMD. Retinal detachment in maternal line.

DIAGNOSIS: Primary Osteoporosis + congenital retinal folds

✓ **PM2** Absent from available databases (GnomAD). ✓ **PP3** Predicted as pathogenic by different bioinformatic tools (CADD, DANN, GERP, Mutation taster).

Osteoporosis - Pseudoglioma Syndrome (OPPG)

Conclusions

- We identified a novel homozygous LRP5 loss-of-function mutation, which causes autosomal recessive Osteoporosis-pseudoglioma syndrome (OPPG, MIM 259770).
- Scarce information exists regarding the treatment of OPPG in children. Thus, understanding the molecular mechanisms underlying primary osteoporosis is important for improving screening for co-morbidities, genetic counselling and the development of novel therapies.

P1-P036

Ш

IV

Bone fractures

Poster number: P1-P036

- ✓ Topic: Bone, growth plate and mineral metabolism 2
- ✓ First author: Débora Braslavsky

Bone, growth plate and mineral metabolism

Debora Braslavsky

