

3-epi-25 hydroxyvitamin D₃ concentrations in Chilean children between 5 and 8 years

Mónica Arancibia^{1,2}, <u>Cristián Seiltgens^{1,3}</u>, Helena Poggi^{1,}, Fidel Allende⁶, Sandra Solari⁶, Soledad Peredo¹, Claudia Trincado¹, Hernán Garcia¹, Ivonne D'Apremont^{1,4}, Rosario Moore¹, Sofía Sifaqui¹, D Andrade⁶, JT Ossa¹, Carlos Fardella⁵, Cristian Carvajal⁵, Carmen Campino⁵, Rene Baudrand⁵, Ximena Sánchez¹, Alejandro Martinez-Aguayo^{1.}

¹Division of Paediatrics, Pontificia Universidad Católica de Chile, ²Paediatrics Unit, Hospital Higueras, Talcahuano, Chile, ³Paediatrics Unit, Hospital La Florida, Santiago, Chile, ⁴Complejo Asistencial Hospital Dr. Sótero del Río, Santiago, Chile. ⁵Endocrinology Department, Pontificia Universidad Católica de Chile, ⁶Department of Clinical Laboratories, Pontificia Universidad Católica de Chile, Santiago, Chile

Introduction

The C3 epimer of 25-hydroxyvitamin D3 (Epi25OHD3) is present in the paediatric and adult population, and varies according to age. It is still unknown if it measurement is clinically relevant and should be considered to classify Vitamin D status.

Objective

To measure 25OHD3, 25-hydroxyvitamin D2 (25OHD2) and Epi25OHD3 and to compare them with PTH and calcemia.

Subjects and methods

Subjects: Children between 5 and 8 years of age born very preterm (VPT: <32 weeks of gestation) and term (≥38 weeks of gestation), both adequate for gestational age (AGA).

Exclusion criteria: Small for gestational age (SGA; weight \leq -2 SD), multiple pregnancy, chronic and acute disease and use of oral corticosteroids.

Measurements: 25OHD2, 25OHD3 and Epi25OHD3 by mass spectrometry (LC-MS/MS) in serum samples.

250HD3 status (ng/mL): deficient <20, insufficient 20-30,

sufficient ≥ 30
Total 250HD3: 250HD3 +

Total 25OHD3: 25OHD3 + Epi25OHD3 Statistical test: U-Mann Whitney.

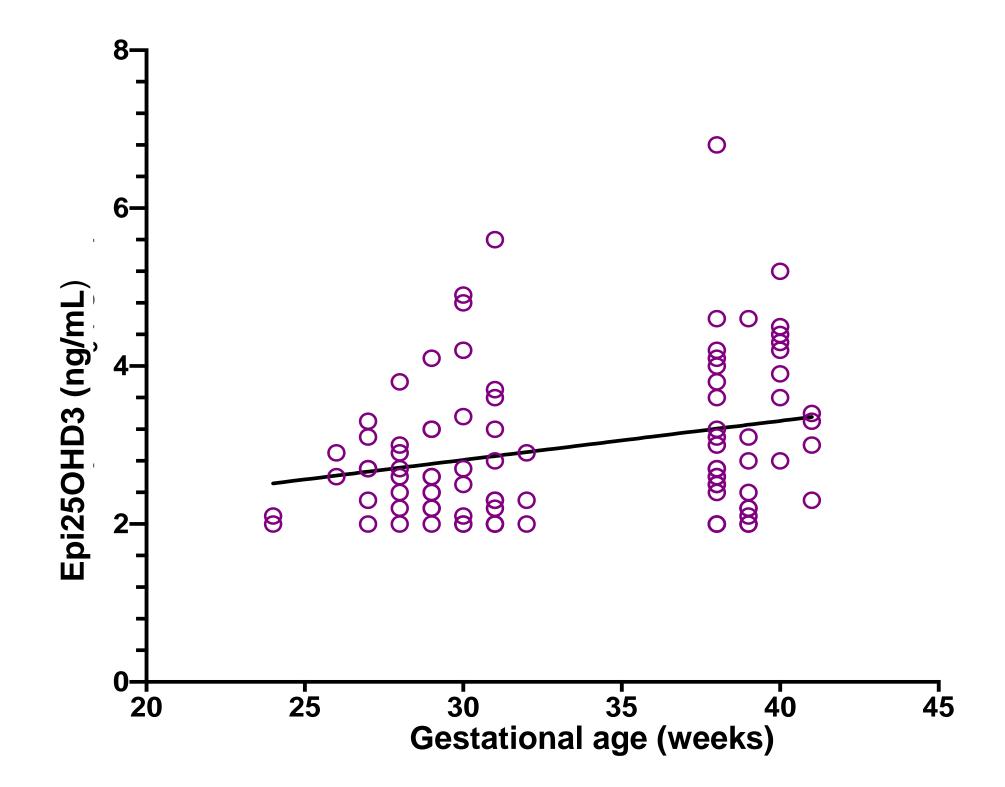

Results

Table 1: General characteristics of the study population

	PRETERM (n=72)		TERM (n=41)		p value
	mean	SD	mean	DS	
Age (years)	6,60	0,90	6,70	1,00	0,535
Bone age (years)	7,20	1,40	7,20	1,30	0,903
Height (SDS)	-0,19	0,86	0,10	1,03	0,109
Abd. circumference (cm)	58,50	7,40	58,50	7,10	0,982
BMI (percentile)	59,00	32,00	64,00	29,00	0,476
Gestational age (weeks)	29,00	2,00	39,00	1,00	<0,001
Birth weight (SDS)	0,40	1,03	0,52	0,72	0,512
Birth length (SDS)	-0,23	1,23	0,56	1,10	<0,001

Seventy seven (83%) of 93 subjects (45% female) had detectable Epi25OHD3 and only 2 subjects 25OHD2 concentrations. Epi25OHD3 was associated with 25OHD3 (r = 0.57, p < 0.0001), calcemia (r = 0.84, p = 0.005) and PTH (r = 0.18, p < 0.0001).

Fig. 1: Epi25OHD3 concentrations and gestational age

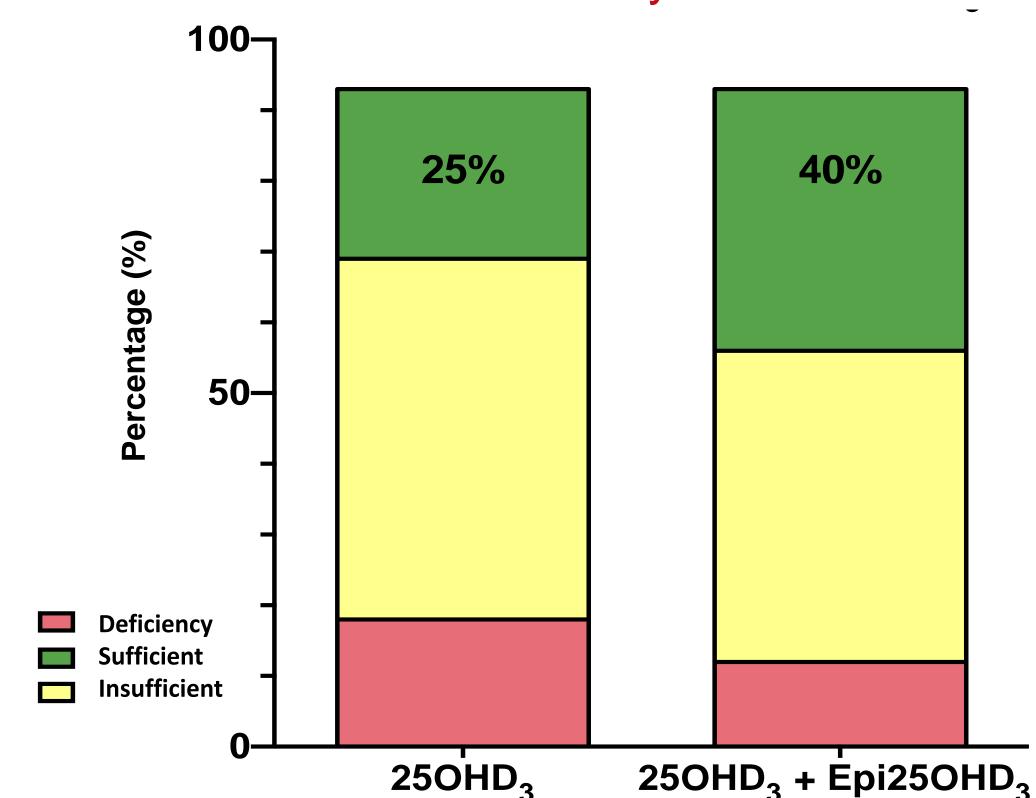

Gestational age was correlated to Epi25OHD3 (r = 0.265, p = 0.011) and 25OHD3 (r = 0.229, p = 0.036).

Table 2: Epi25OHD3 percentage by gestational age

GESTATIONAL AGE	Epi25OHD3 / Total 25OHD3 (%)
PRETERM	9,7% [8,7 – 11,1]
TERM	10,6% [9,6 – 12,2]
TOTAL	10,2% [9,1 – 113]

Differences in the percentage of total Epi25OHD3 / 25OHD3 between VPT and term subjects was statistically significant (p = 0.04).

Fig. 2: Vitamin D status according to 25OHD3 and total 25OHD3 in children between 5-8 years

When categorizing Vitamin D status using total 25OHD3, the percentage of children with a deficient and insufficient status dropped from 19.4% to 12.9%, and from 54.8% to 47%, respectively. On the contrary, the proportion of children with a sufficient status raised from 25.8% to 39.8%.

Conclusions

- ✓ Epi25OHD3 concentrations found in children at school age, correlates with gestational age and is different in preterm than in term children.
- ✓ It is necessary to establish the physiological role of Epi25OHD3, since when considered, it changed Vitamin D status in an important proportion of children.
- ✓ Including its measurement in routinely used immunoassays and their harmonization in this regard, could be relevant in the classification of Vitamin D status.

References

Strathmann et al. 3-epi-25 hydroxyvitamin D concentrations are not correlated with age in a cohort of infants and adults Clin Chim Acta. 2012 January 18; 413(1-2): 203–206. doi:10.1016/j.cca.2011.09.028.

D. Bailey et al. Analytical measurement and clinical relevance of vitamin D3 C3-epimer. Clinical Biochemistry 46 (2013) 190–196

N.D. Mydtskov et al. S-25-hydroxyvitamin D and C3-epimers in pregnancy and infancy: An Odense Child Cohort study Clinical Biochemistry

http://dx.doi.org/10.1016/j.clinbiochem.2017.07.001

Granado-Lorencio *et al.* 3-Epi-25-OH-D3 during Hypervitaminosis D J Clin Endocrinol Metab, December 2012, 97(12):E2266–E2270

Lensmeyer *et al.* 3-Epi-25 Hydroxyvitamin D3 in Adults J Clin Endocrinol Metab, January 2012, 97(1):163–168

CONICYT: FONDECYT 1140447 and 1160836

