

# **Glucose Intolerance in Survivors of Childhood** Hematologic Disorders

Seonhwa Lee, Yujung Choi, Seul ki Kim, Moonbae Ahn, Min-kyo Chun, Shinhee Kim, Wonkyoung Cho, Kyoungsoon Cho, Min ho Jung and Byungkyu Suh

Department of Pediatrics, College of Medicine, Catholic University of Korea

## Introduction and objectives

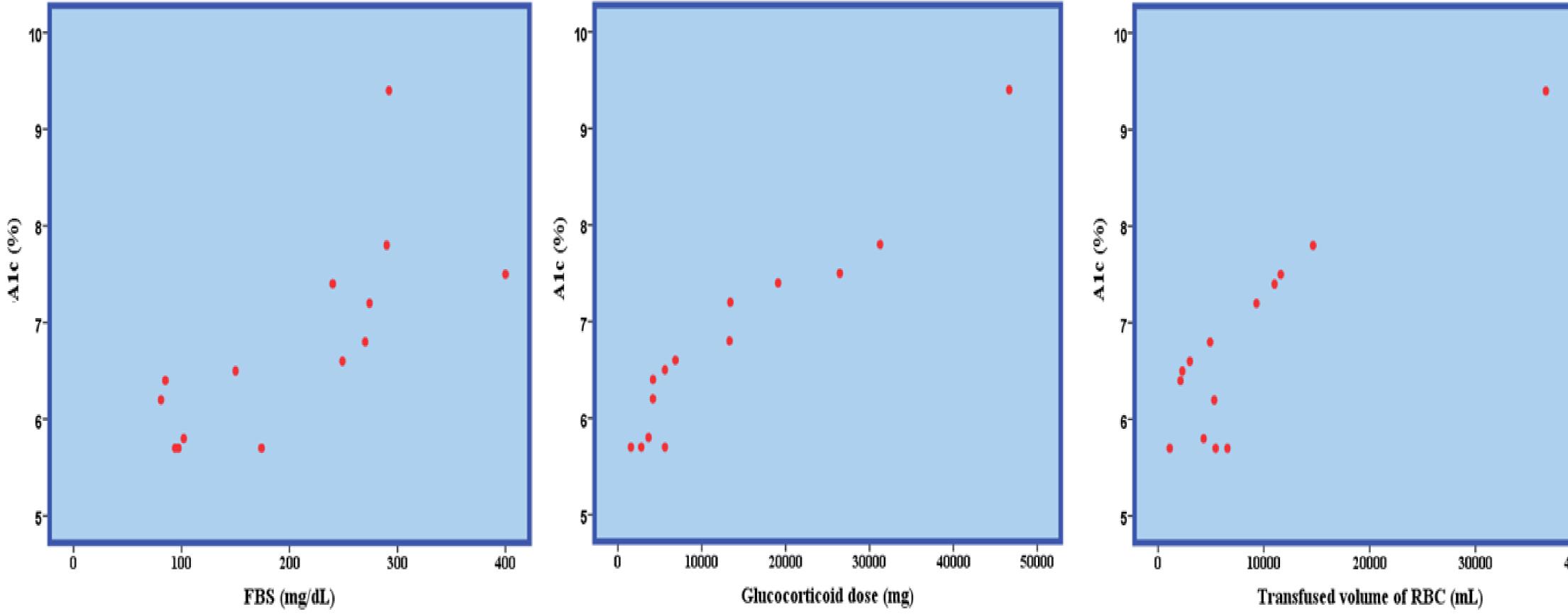
To investigate overall characteristics of glucose intolerance in childhood survivors of hematologic diseases and suggest potential risk factors which increase A1c (glycated hemoglobin) level.

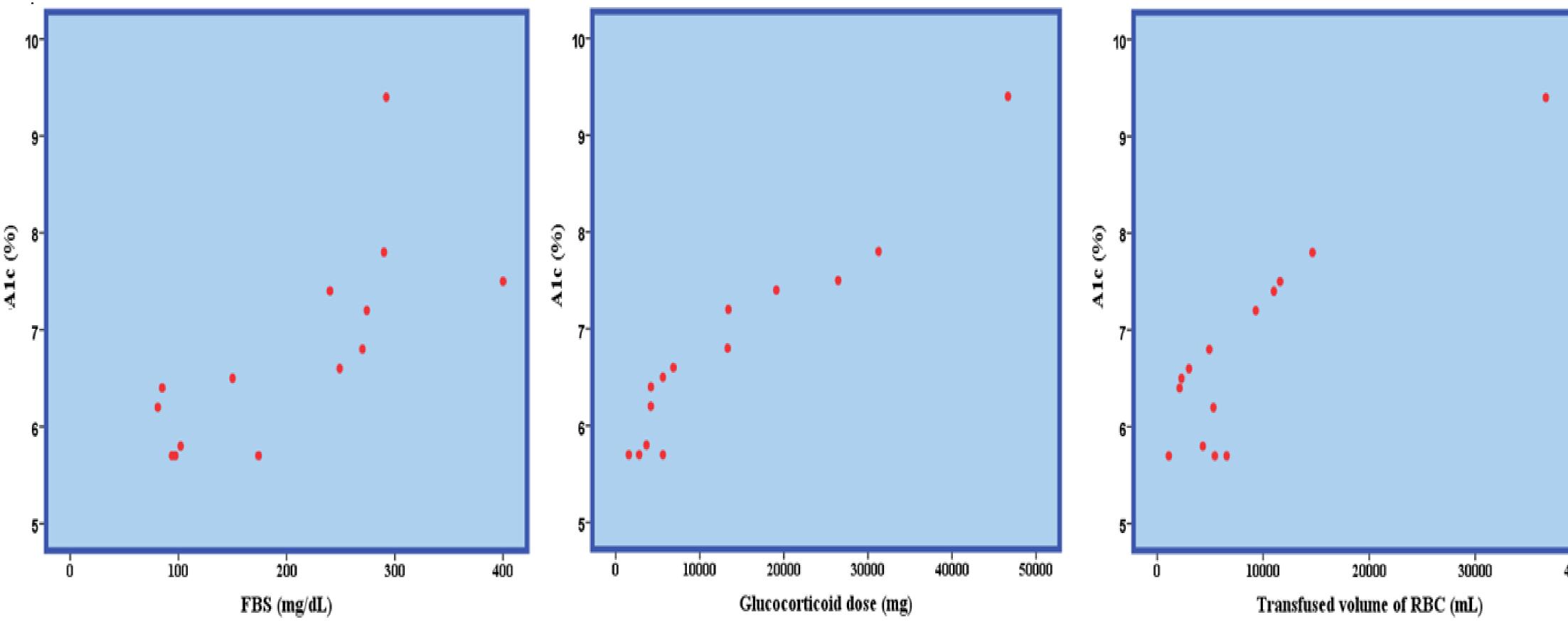
 
 Table 1. Clinical and biochemical profiles at diagnosis of glucose
intolerance

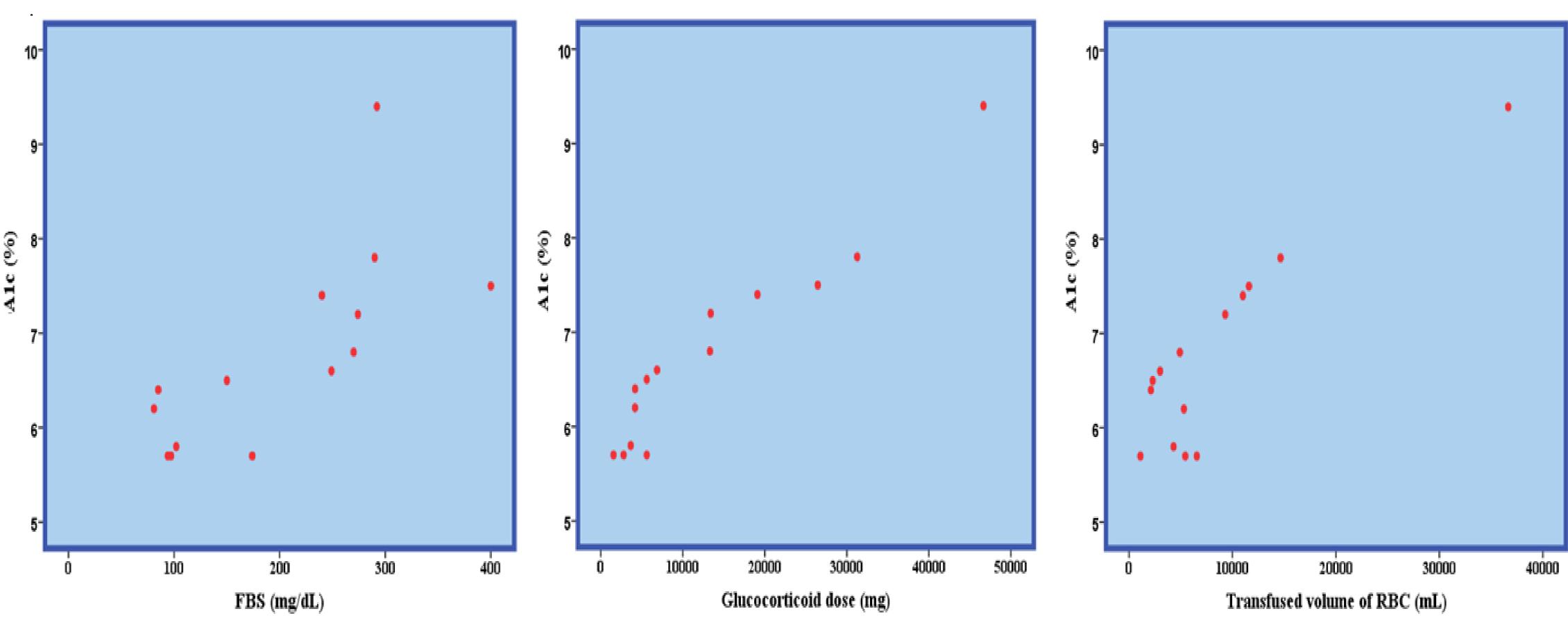
|                                  | AL (n=7)             | AA (n=7)            |
|----------------------------------|----------------------|---------------------|
| Age (years)                      | 16.1 (4.1 – 21.1)    | 12.2 (8.3 – 16.6)   |
| A1c (%)                          | 6.4 (5.7 - 9.4)      | 6.6 (5.7 – 7.8)     |
| FBS (mg/dL)                      | 174.0 (81.0 - 400.0) | 240.0 (97.0 – 29.0) |
| Fasting insulin (μU/mL)          | 25.7 (1.2 - 58.2)    | 31.2 (9.9 – 97.6)   |
| Fasting c-peptide (ng/mL)        | 5.2 (1.1 - 7.5)      | 5.3 (2.1 – 14.4)    |
| HOMA-IR                          | 13.5 (0.2 - 25.4)    | 15.1 (4.4- 69.9)    |
| RBC counts (10 <sup>12</sup> /L) | 4.3 (2.6 – 4.8)      | 2.6 (1.9-4.9)       |
| MCV(10 <sup>-15</sup> /L)        | 95.3 (70.3 – 100.5)  | 91.7 (80.6 – 100.5) |

### Methods

Based on a retrospective review of 394 children who were diagnosed with acute leukemia or aplastic anemia between 2015 and 2016 under the age of 15, glucose intolerance was observed in 14 patients. A definition of glucose intolerance was A1c above 5.7 %. Auxological and biochemical profiles as well as therapeutic factors were compared.


#### Table 2. Clinical profiles of the fourteen patients with glucose intolerance


| ID | Gender | Diagnosis | Transplant | GvHD    |                                 |     | FBS        | GC dose     | TF volume         |                  |                      |
|----|--------|-----------|------------|---------|---------------------------------|-----|------------|-------------|-------------------|------------------|----------------------|
|    |        |           |            | Туре    | Lesion                          | A1c | (mg/dL)    | (mg)        | (mL)              | Possible trigger | Treatment            |
| 1  | F      | ALL       | Allo-CBT   | Acute   | Skin                            | 9.4 | 292.0 [2]‡ | 46649.2 [1] | 36660.0 [1]       | Glucocorticoid   | Insulin              |
| 2  | М      | AA        | FMM-PBSCT  | Chronic | Skin, liver                     | 7.8 | 290.0 [3]  | 31265.0 [2] | 14650.0 [2]       | Glucocorticoid   | Insulin              |
| 3  | F      | ALL       | -          | _       | _                               | 7.5 | 400.0 [1]  | 26455.6 [3] | 11600.0 [3]       | Glucocorticoid   | None                 |
| 4  | F      | AA        | Allo-PBSCT | Chronic | Skin, eye, lung,<br>liver       | 7.4 | 240.0 [7]  | 19105.0 [4] | 11010.0 [4]       | Glucocorticoid   | None                 |
| 5  | М      | AA        | Allo-PBSCT | Acute   | Skin                            | 7.2 | 274.0 [4]  | 13397.6 [5] | 9300.0 [5]        | Glucocorticoid   | Insulin<br>Biguanide |
| 6  | F      | AML       | MSD-PBSCT  | Chronic | Skin, oral, lung,<br>liver      | 6.8 | 270.0 [5]  | 13308.5 [6] | 4920.0 [9]        | Glucocorticoid   | None                 |
| 7  | М      | FA        | Allo-PBSCT | Acute   | Skin                            | 6.6 | 249.0 [6]  | 6853.9 [7]  | 3000.0 [11]       | Glucocorticoid   | None                 |
| 8  | F      | FA        | -          | _       | _                               | 6.5 | 150.0 [9]  | 5611.8 [8]  | 2300.0 [12]       | Hemochromatosis  | Insulin              |
| 9  | F      | AML       | MSD-PBSCT  | Chronic | Skin, eye, oral,<br>lung, liver | 6.4 | 85.0 [13]  | 4185.0 [10] | 2110.0 [13]       | Glucocorticoid   | Biguanide            |
| 10 | М      | JMML      | FMM-PBSCT  | Chronic | Skin, eye, lung                 | 6.2 | 81.0 [14]  | 4178.1 [11] | 5310.0 [8]        | Glucocorticoid   | None                 |
| 11 | F      | AA        | Allo-BMT   | Acute   | Upper GI                        | 5.8 | 102.0 [10] | 3666.6 [12] | 4300.0 [10]       | Glucocorticoid   | None                 |
| 12 | М      | ALL       | MSD-PBSCT  | Acute   | Engraftment<br>syndrome         | 5.7 | 174.0 [8]  | 1559.0 [14] | 6550.0 <b>[6]</b> | Glucocorticoid   | Insulin              |
| 13 | F      | ALL       | Allo-PBSCT | Acute   | Skin, oral                      | 5.7 | 94.0 [12]  | 2800.0 [13] | 5440.0 [7]        | Glucocorticoid   | None                 |
| 14 | М      | AA        | FMM-PBSCT  | Acute   | Skin                            | 5.7 | 97.0 [11]  | 5611.8 [8]  | 1090.0 [14]       | Glucocorticoid   | None                 |


# Results

Among 14 children (3.5 %) with glucose intolerance, 7 (50.0 %) patients were diagnosed with leukemia and 7 with aplastic anemia. Eight patients (57.1%) were diabetic (A1c  $\geq$  6.5 %, fasting blood glucose  $\geq$  126.0 mg/dL with clinical presentation of polyuria, polydipsia or weight loss) whereas 6 (42.9 %) were prediabetic (A1c in between 5.7 – 6.4 %). By univariate regression, fasting blood glucose (R<sup>2</sup>=0.538, *P=0.003*), glucocorticoid dose (R<sup>2</sup>=0.920, *P<0.001*) and volume of transfused red blood cell (R<sup>2</sup>=0.789, *P*<0.001) were positively correlated with A1c. Multiple regression analysis suggested accumulated glucocorticoid dose (R<sup>2</sup>=0.920, *P=0.019*) as a strong risk factor of glucose intolerance.

Abbreviations: A1c, glycated hemoglobin; AA; aplastic anemia; AL, acute leukemia; BMT, bone marrow transplant; CBT, cord blood transplant; FBS, fasting blood glucose; FMM, family mismatched; GC, glucocorticoid; GvHD; graft-versus-host disease; HOMA-IR, homeostatic model assessment of insulin resistance; MCV, mean corpuscular volume; MSD, matched sibling donor; PBSCT, peripheral blood stem cell transplant; RBC, red blood cell; TF, transfusion







### Conclusion

Fig. Clinical factors affecting the A1c at diagnosis of glucose intolerance

In young survivors after treatment completion of hematologic diseases, several clinical and biochemical factors could influence serum A1c and cause glucose intolerance. Among them, glucocorticoid dose might significantly trigger newly diagnosed diabetes.

The authors have no conflict to interest to disclose.

