# Lipid accumulation product is a predictor of non-alcoholic fatty liver disease in childhood obesity

#### Bahar Özcabı<sup>1</sup>, Salih Demirhan<sup>2</sup>, Mesut Akyol<sup>3</sup>, Hatice Öztürkmen Akay<sup>4</sup>, Ayla Güven<sup>1</sup>

<sup>1</sup> Health Science University Medical Faculty Zeynep Kamil Maternity and Children's Diseases Research and Training Hospital Division of Pediatric Endocrinology <sup>2</sup> Health Science University Medical Faculty Zeynep Kamil Maternity and Children's Diseases Research and Training Hospital Department of Pediatrics J <sup>3</sup> Yıldırım Beyazıt University Medical Faculty Department of Biostatistics CC. Səğlik Bəkəl ürkiye Kamu Hastaneleri Ku İstanbul Anadolu Kuzey Kamu Hastaneleri Birliği

<sup>4</sup> Health Science University Medical Faculty Zeynep Kamil Maternity and Children's Diseases Research and Training Hospital Department of Radiology

## **OBJECTIVES:**

We aimed to evaluate the performance of lipid accumulation product (LAP) to predict non-alcoholic fatty liver disease (NAFLD) in

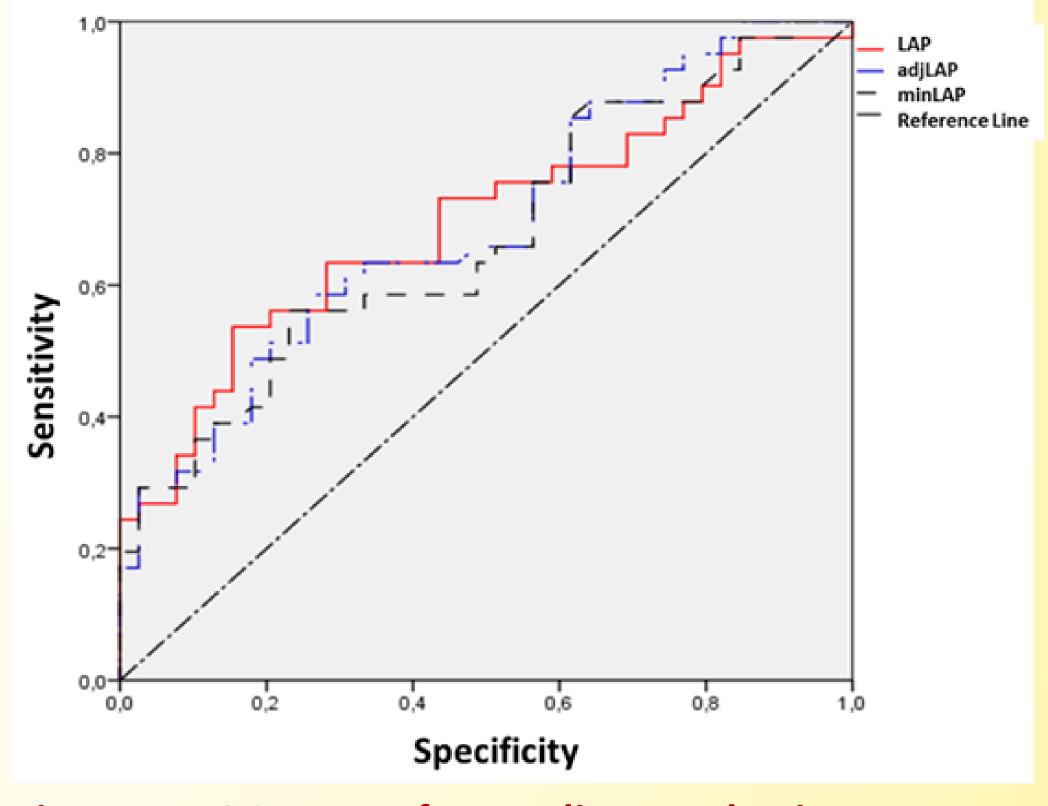
obese children.

### **METHODS:**

**Eighty obese chidren (39 girl) were included in this study (6-18 years).** 

Table 1: Clinical features and laboratory findings of patients with and without non-alcoholic fatty liver disease (NAFLD)

|       |           |            | Ctatistical |  |
|-------|-----------|------------|-------------|--|
| NAFLD | No (n=39) | Yes (n=41) |             |  |
|       |           |            |             |  |


| Height, weight, body mass index (BMI), waist circumference (WC), puberty    | Variable                      |
|-----------------------------------------------------------------------------|-------------------------------|
| stage, blood pressure and biochemical values were obtained from the         | Age, year                     |
| medical records. SDS and percentiles were calculated. LAP was calculated as | Gender                        |
| [WC (cm) - 58] x triglyceride concentration (mmol/L) in girls;              | Puberty s                     |
| [WC (cm) - 65] x triglyceride concentration (mmol/L) in boys.               | Stage 1<br>Stage 2<br>Stage 3 |
| Other two variant LAP values were described according to 3% (minLAP) and    | Stage 3<br>Stage 4<br>Stage 5 |
| 50% (adjLAP) of WC values previously considered for age and gender in       | Weight Sl<br>Height SD        |
| childhood. The total cholesterol/HDL-cholesterol index (TC/HDL-C) was       | BMI<br>BMI SDS                |
| calculated. NAFLD was showed by ultrasound. The AUC and appropriate         | BMI %<br>WC, cm               |
| cutoff points for LAP, adjLAP and minLAP were calculated by ROC analysis.   | Systolic T<br>Diastolic       |
| RESULTS:                                                                    | Fasting gl<br>Fasting in      |
|                                                                             | HOMA-IR                       |

| Variable                                           |                       | Mean±SD                  | <b>Mean±SD</b>           | Statistical            | р      |
|----------------------------------------------------|-----------------------|--------------------------|--------------------------|------------------------|--------|
|                                                    |                       | Median (IQR)             | Median (IQR)             | Analysis*              | P      |
| Age, year                                          |                       | 11.1±2.8                 | <b>11.9±2.6</b>          | t=1.299                | 0.198  |
| Gender                                             | Girl<br>(n=38)<br>Boy | 25 (31.3%)<br>14 (17.4%) | 13 (16.3%)<br>28 (35.0%) | c <sup>2</sup> =8.411  | 0.004  |
|                                                    | (n=42)                | I ( I / / 0)             | 20 (33.070)              |                        |        |
| Puberty stage                                      |                       |                          |                          |                        |        |
| Stage 1 (n=22)<br>Stage 2 (n=22)<br>Stage 3 (n=12) |                       | 16 (20.0%)               | 6 (7.4%)                 | c <sup>2</sup> =12.633 | 0.013  |
|                                                    |                       | 5 (6.3%)                 | 17 (21.3%)               |                        |        |
|                                                    |                       | 7 (8.8%)                 | 5 (6.3%)                 |                        |        |
| Stage 4 (n=15)<br>Stage 5 (n=9)                    |                       | 6 (7.4%)<br>5 (6.3%)     | 9 (11.2%)<br>4 (5.0%)    |                        |        |
| Weight SDS                                         |                       | 2.55 (0.90)              | 2.99 (1.21)              | Z=2.691                | 0.007  |
| -                                                  |                       |                          | 0.97±1.37                |                        |        |
| Height SDS                                         |                       | 0.73±0.96                |                          | t=0.895                | 0.374  |
| BMI                                                |                       | 26.90 (6.19)             | 30.71(4.43)              | Z=3.316                | 0.001  |
| BMI SDS                                            |                       | 2.38±0.48                | 2.76±0.59                | t=3.108                | 0,003  |
| BMI %                                              |                       | 98.7 (1.7)               | 99.7 (1)                 | Z=3.124                | 0.002  |
| WC, cm                                             |                       | 89.7±13.3                | 98.8±10.5                | t=3.399                | 0.001  |
| Systolic TA, mmHg (n=28)                           |                       | 115.0 (14.3)             | 122.5 (10.0)             | Z=3.241                | 0.001  |
| Diastolic TA, mmH                                  | lg (n=28)             | <b>73</b> ±8             | 77±9                     | t=1.672                | 0.100  |
| Fasting glucose, m                                 | ng/dl                 | <b>90±8</b>              | <b>89</b> ±7             | t=0.756                | 0.452  |
| Fasting insulin, ul                                | J/ml                  | 12.70 (9.70)             | 17.40 (8.25)             | Z=3.311                | 0.001  |
| HOMA-IR                                            |                       | <b>2.93±1.5</b>          | <b>4.01±1.54</b>         | t=3.169                | 0.002  |
| ALT, IU/L                                          |                       | 17 (10)                  | 28 (22)                  | Z=4.528                | <0.001 |
| AST, IU/L (n=30)                                   |                       | 20 (6)                   | 21 (9)                   | Z=1.103                | 0.285  |
| Uric acid, mg/dl (n=77)                            |                       | 4.7 (1.3)                | 5.2 (1.5)                | Z=2.821                | 0.005  |
| Cholesterol, mg/dl                                 |                       | <b>163±34</b>            | <b>170±26</b>            | t=1.141                | 0.257  |
| Triglyceride, mg/dl                                |                       | 91.0 (52.0)              | 114 (62)                 | Z=1.771                | 0.077  |
| HDL-C, mg/dl (n=79)                                |                       | 45 (13)                  | 47 (16)                  | Z=0.300                | 0.764  |
| LDL-C, mg/dl (n=79)                                |                       | 94±28                    | 101.3±19.5               | t=1.302                | 0.197  |
| Cholesterol/HDL-C, (n=79)                          |                       | 3.74 (0.91)              | 3.88 (1.41)              | Z=1.595                | 0.111  |
| LAP                                                |                       | 30.4 (20.3)              | 42.8 (43.0)              | Z=3.047                | 0.002  |
| AdjLAP (%50)                                       |                       | 32.1 (23.9)              | 43.3 (40.7)              | Z=2.936                | 0.003  |
| MinLAP (%3)                                        |                       | 45.9 (23.9)              | 56 (48.5)                | Z=2.666                | 0.008  |

with and without liver fat are summarized in the Table 1. LAP showed a positive and moderate correlation with puberty stage (rho=0.409; p<0.001), fasting insulin (rho=0.507; p<0.001), HOMA-IR (rho=0.470; p<0.001), uric acid (rho=0.522; p<0.001), TC/HDL-C (rho=0.494; p<0.001) and a weak negative correlation with HDL-C (rho=-3.833; p<0.001). Similar results were detected for minLAP and adjLAP. It was found that LAP values could be used to diagnose hepatosteatosis (AUC = 0.698; p = 0.002). Sensitivity and specificity values for LAP  $\geq$  42.70 cases were found as 53.7% and 84.6%, respectively (Figure 1). The cut-off points for LAP were AUC = 0.704; p = 0.033 in males and AUC = 0.693; p = 0.013 in pubertal. While the cutoff point for adjLAP  $\geq$  40.05 (AUC=0.691; p=0.003), sensitivity (58.5%) and

**Anthropometric measurements, biochemical values and indexes in patients** 





specificity (74.4%) were calculated. While the cutoff point for minLAP ≥

**53.47 (AUC=0.673;** p = 0.0083), sensitivity (56.1%) and specificity (76.9%)

were found. LAP exhibited a high diagnostic accuracy for identifying NAFLD

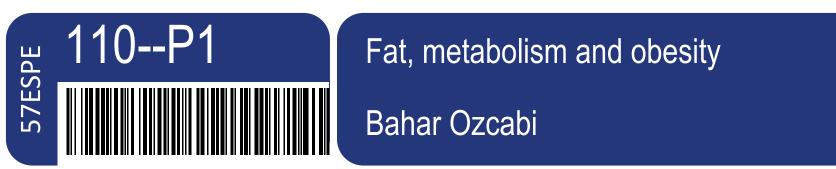

(AUC=0.698; p=0.002).

Figure 1: ROC curve of LAP, adjLAP and minLAP

## **CONCLUSIONS:**

LAP is a is a powerfull and easy tool to predict NAFLD in childhood and is correlated with TC/HDL-C and uric acid level. This is the

first study assessing the accuracy of LAP in childhood obesity.



