

Developmental Psychophysiology & Stress Research Laboratory First Department of Pediatrics National & Kapodistrian University of Athens dbpeds-lab.uoa.gr

Serum concentrations of the endocrine disruptors-organochlorine pesticides (OCPs) in Greek children with Neurodevelopmental Disorders

Makris G¹, Chrousos G¹, Sabico S², Abd-Alrahman SH², Al-Daghri NM², Chouliaras G¹, Pervanidou P¹ 1. First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece 2. Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia

Background: The exposure to environmental toxicants has been estimated to contribute directly to 3% of human neurodevelopmental disorders (NDDs)¹. Organochlorine pesticides (OCPs), which are widespread persistent organic pollutants (POPs), have been implicated mainly because of their endocrine disruptive nature². Previous studies have primarily assessed the association of maternal serum, the placenta barrier and the breast milk levels of OCPs with later developmental or behavioral ability¹. However, it has not yet

Aim: The aim of the current cross-sectional study was to assess the levels of DDT and its metabolites, HCH and its isomers, cyclodienes and methoxychlor in serum samples from schoolaged children diagnosed with High Functioning Autistic Disorder, Attention Deficit Hyperactivity Disorder, and Specific Learning Disorder compared to Typically Developing controls.

Method: A total of 114 schoolchildren of both sexes aged between 6 and 13 years old, took part in the study (Table 1). Children were distributed into four groups: High functioning Autistic disorder [HFA] (n=39), Attention Deficit Hyperactivity Disorder [ADHD] (n=21), Specific Learning Disorder (SLD) (n=32), Typically Developing controls [TD] (n=18). The participants had to be Greek and residing in the city of Athens from the time of their birth. The mother of each child had to reside in Athens more than 5 years prior to the conception's occurrence. Exclusion criteria comprised the co-occurrence of ASD and ADHD, a general IQ below 70 (WISC-III), genetic syndromes or chromosomal abnormalities, comorbid chronic disorders/conditions, comorbid neurological or other psychiatric diseases, taking any kind of medication, prematurity <30 weeks and BMI above the 85th percentile for age and gender. Blood sampling was performed between 8:00 and 10:00 am after an overnight fast. Eighteen OCPs were measured by gas chromatography–mass spectrometry (GC/MS)⁴. OCPs concentrations were adjusted for total serum lipids (TL) [TL = 1.31* (CHOL + TG) + 0.92] and are presented as nanograms/gram lipid⁵.

Table 1. Descriptive characteristics^a of the study population by group.

	TD	HFA	ADHD	SLD
Age (years)	10.0 ± 2.1	8.6±1.7	9.0±1.3	9.3 ± 1.8
		p=0.024	p=0.11	p=0.34
Gender, males, n (%)	13 (72.2%)	33 (84.6%)	15 (71.4%)	19 (59.4%)
		p=0.30	p=0.99	p=0.54
Birth weight (g)	3301 ± 648	3176 ± 408	3021 ± 496	2936 ± 522
		p=0.70	p=0.22	p=0.11

Results: Ten of the 18 OCPs were each detected and quantified in at least one sample. Each clinical group was compared to the TD group. The serum concentrations (SC) of β -HCH (p=0.049), the sum of HCH isomers (Σ HCHs) (p=0.025) and 0,p'-DDD (p=0.0019) were significantly higher in HFA children. The detection rates (DR) of p,p'-DDT (p=0.037), at least one substance from the group of DDTs detected (Σ DDTs) (p=0.044) and Heptachlor epoxide (p=0.026) were lower in the HFA group (Table 2). No significant differences regarding both the SC and the DR of any OCP were found between the ADHD or SLD groups and the TD group (Table 2). For those OCP-parameters that were found to differ between the clinical groups and the TD group and were, also, associated with demographic, gestational, perinatal and IQ data, multiple regression was applied. In the case of 0,p'-DDD levels, inclusion of gestational age in the regression model absorbed statistical significance between TD and HFA groups [TD vs HFA: β -coefficient=-0.53, (-5.7, 4.6), p=0.82, gestational age: β -coefficient=1.5, (-0.46, 3.5), p=0.12].

Total cholesterol (g/l)	1.7±0.2	1.9 ± 0.3, p=0.017	2.0±0.4, p=0.015	1.9 ± 0.3, p=0.032	
Triglycerides (g/l)	0.69±0.30	0.79±0.47 p=0.80	0.70 ± 0.27 p=0.82	0.71±0.34 p=0.95	
Total serum lipids (g/l)	4.1±0.4	4.5 ± 0.8 p=0.074	4.4±0.6 p=0.042	4.3 ± 0.6 p=0.34	
Wisc General IQ	114.9 ± 14.9	104.5 ± 17.0 p=0.021	101.8 ± 12.9 p=0.0045	105.9 ± 13.5 p=0.038	
Wisc Verbal IQ	109.9 ± 16.2	94.6±17.4 p=0.0039	96.9 ± 16.3 p=0.026	100.7 ± 15.6 p=0.06	
Maternal age at birth (years)	33.2 ± 5.0	33.4 ± 5.0 p=0.90	31.3 ± 5.4 p=0.20	31.9 ± 3.2 p=0.42	
Gestational age (weeks)	37.4 ± 1.1	38.4 ± 1.3 p=0.076	38.3 ± 2.1 p=0.38	35.9 ± 3.5 p=0.86	
Smoking during pregnancy, Yes, n, %	1 (7.1%)	9 (29.0%) p=0.13	2 (9.5%) p=0.99	4 (12.9%) p=0.99	

<u>Note</u>: ^a Continuous variables are presented as mean ± standard deviation. P-values refer to comparisons between TD and clinical groups (Mann-Whitney U test for continuous outcomes and Fisher's exact test for categorical variables).

Conclusion: We demonstrated higher SCs (β -HCH, Σ HCHs) and lower DRs (p,p'-DDT, Σ DDT, heptachlor epoxide) of several OCPs in HFA than TD children. No differences were observed between the ADHD or SLD groups and TD

Table 2. Summary of serum concentrations (SC)^a and detection rate (DR)^b of OCPs in the four study groups^c

Compounds		TD		HFA		ADHD		SLD	
		DR	SC	DR	SC	DR	SC	DR	SC
lCHs	α-HCH	2 (11.1%)	2.9±0.1	6 (15.4%)	7.6±6.2	4 (19.1%)	4.5 ± 2.0	1 (3.1%)	na
	β-ΗϹΗ	11 (61.1%)	6.1±4.0	30 (76.9%)	10.5 ± 7.7 [*]	11 (52.4%)	8.0±6.1	19 (59.4%)	9.5 ± 7.1
	ү-НСН	0 (0.0%)	na ^d	2 (5.1%)	5.7 ± 4.9	3 (14.3%)	5.8 ± 5.9	4 (12.5%)	6.2 ± 2.4
	δ-ΗϹΗ	-	_	-	-	-	_	-	-
	∑HCHs ^h	11 (61.1%)	6.6 ± 4.0	31 (79.5%)	12.0 ± 10.3 *	14 (66.7%)	8.8±7.1	23 (71.9%)	9.4 ± 8.1
DTs	p,p'-DDT	7 (38.9%)	22.4 ± 11.9	5 (12.8%)*	29.1 ± 20.5	6 (28.6%)	30.1 ± 16.7	9 (28.1%)	32.1 ± 22.4
	p,p´-DDE	3 (16.7%)	48.1 ± 17.2	5 (12.8%)	70.1 ± 27.1	1(4.8%)	na	3 (9.4%)	61.6 ± 21.7
	o,p´-DDE	0 (0.0%)	na	1(2.6%)	na	1(4.8%)	na	2 (6.3%)	5.5 ± 4.4
	p,p´-DDD	2 (11.1%)	39.2 ± 48.9	0 (0.0%)	na	0 (0.0%)	na	0 (0.0%)	na
	o,p´-DDD	14 (77.8%)	2.8 ± 2.3	20 (51.3%)	7.4 ± 6.5 *	14 (66.7%)	5.1 ± 3.6	17 (53.1%)	4.5 ± 3.9
	∑DDTs	17 (94.4%)	24.6 ± 23.4	27 (69.2%)*	24.0 ± 28.4	18 (85.7%)	18.7 ± 24.4	28 (87.5%)	20.0 ± 24.3
Cyclodienes	Heptachlor epoxide	7 (38.9%)	25.0 ± 22.5	4 (10.3%)*	28.4 ± 21.8	5 (23.8%)	40.7 ± 25.3	5 (15.6%)	35.8 ± 22.2
	Endosulfan	1 (5.6%)	na	4 (10.3%)	15.5 ± 4.7	6 (28.6%)	17.4 ± 9.3	5 (15.6%)	14.9 ± 4.8
	Heptachlor, Aldrin, Dieldrin, Endosulfan sulfate, Endrin, Endrin- aldehyde	-	-	-	-	-	-	-	-
	∑Cyclodienes	8 (44.4%)	24.6 ± 20.8	8 (20.5%)	21.9 ± 16.1	10 (47.6%)	30.8 ± 20.1	10 (31.3%)	25.4 ± 18.7
/lethoxychlor		-	-	-	-	-	-	-	-
OCPs		18 (100%)	38.2 ± 31.5	39 (100%)	30.6 ± 29.4	21 (100%)	36.6 ± 39.4	32 (100%)	32.2 ± 32.6

children. Our findings are in accordance with previous, mainly prospective, studies reporting that exposure to environmental toxicants during the fetal period, infancy and early childhood is associated with NDDs in children¹. The present study provides evidence of the potentially prominent role of HCHs, which have been implicated as a potentially thyroid disrupting compound in children, in the pathophysiology of Autism Spectrum Disorder⁶. Lower DRs found in HFA children may be indicative of a potential doseresponse effect of OCPs during development⁷. Even though cross-sectional findings are of limited worth regarding the causal relationship of the observed associations, our results add to potential neurodevelopmental concerns surrounding OCPs.

<u>Note</u>: ^aSC: total lipids-adjusted serum concentrations in nanograms per gram lipid, presented as mean ± standard deviation; ^bDR: detection rate absolute number and proportion of individuals above the limit of detection; ^cComparisons were performed between the clinical groups and the TD group (Mann-Whitney U test for continuous & Fisher's exact test for categorical variables); ^dna: Non-applicable; ^hΣHCHs, ΣDDTs, ΣCyclodienes and ΣOCPs describe regarding the SC: the concentration sum and the DR: at least one chemical from the respective OCPs group detected; *Statistically significant differences

<u>References</u>

1. Saeedi Saravi, S.S., & Dehpour, A.R.(2016). Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. *Life Sciences*, 145, 255–264.

2. Howdeshell, K.L.(2002). A model of the development of the brain as a construct of the thyroid system. *Environmental Health Perspectives*. 110(Suppl 3):337-48. 3. Lee, D.-H., Jacobs, D. R., & Porta, M. (2007). Association of serum concentrations of persistent organic pollutants with the prevalence of learning disability and attention deficit disorder. *Journal of Epidemiology & Community Health*, 61(7), 591–596.

4. Al-Othman, A. A., Abd-Alrahman, S. H., & Al-Daghri, N. M. (2015). DDT and its metabolites are linked to increased risk of type 2 diabetes among Saudi adults: a crosssectional study. *Science and Pollution*, 22, 379–386.

5. O'Brien, K. M., Upson, K., & Buckley, J. P. (2017). Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures. Current Environmental Health Reports, 4(1), 44–50.

6. Álvarez-Pedrerol, M., Ribas-Fitó, N., Torrent, M., Carrizo, D., Garcia-Esteban, R., Grimalt, J. O., & Sunyer, J. (2008). Thyroid disruption at birth due to prenatal exposure to β-hexachlorocyclohexane. *Environment International*.

7. Berghuis, S. A., Bos, A. F., Sauer, P. J. J., & Roze, E. (2015). Developmental neurotoxicity of persistent organic pollutants: an update on childhood outcome. Archives of Toxicology, 89(5), 687–709.

Gerasimos Makris

