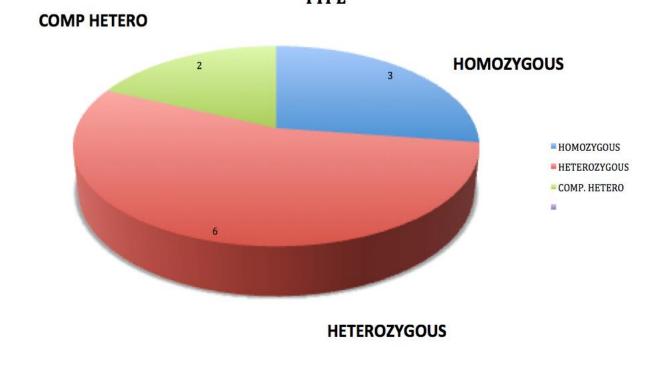

Clinical details, Molecular genetic analysis AND Clinical phenotype correlation of 14 patients with Neonatal diabetes from the South India – A Single Centre Experience

V. Sri Nagesh1, Andrew Hattersley2, Sian Ellard2, Elisa De Franco2, Sarah Flanagan2, Bipin Sethi³, Altaf Naseem⁴, Syed Tanveer Ahmed⁴ 1. Consultant Endocrinologist, SriNagesh Clinic, Hyderabad 2. University of Exeter - Medical School 3. CARE Hospital, Hyderabad 4. Candy **Children's Hospital, Hyderabad**


Background

Neonatal diabetes typically presents within the first 6 months of life. **Often misdiagnosed as Type 1 Diabetes and on lifelong insulin therapy. Doctors unaware of monogenic variants. Recent studies report prevalence much higher at 1 in 90,000.** NDM prevalence is probably higher in India due to the high frequency

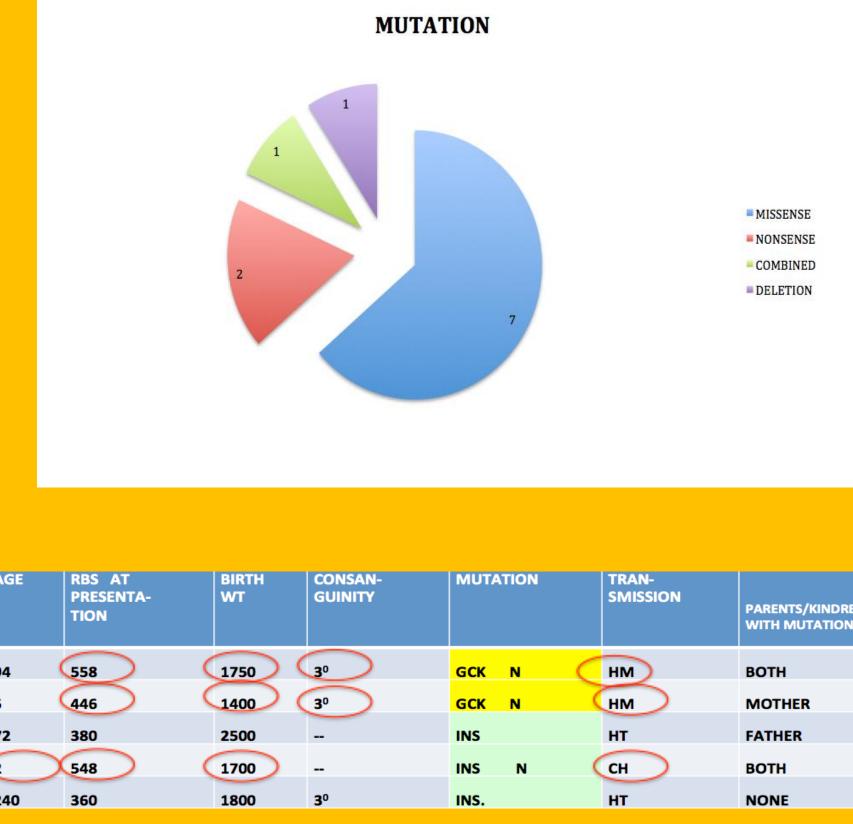
of consanguineous marriages, especially in South India. Few studies reported, mostly from South India. No nationwide studies or genotype-phenotype co-relation

Zygosity of Mutations TYPE

AIMS AND OBJECTIVES

Describe the molecular genetics of a South Indian cohort of NDM patients referred to a single centre

Μ


					S.NO	AGE	RBS AT PRESENTA	- BIRTH	CONSAN- GUINITY	MUTATION	TRAN- SMISSION	DNA (pro descriptio			PARENTS/KI NDRED WITH	PATHO -GENE-
							TION								MUTATION	CITY
1UTA	ATION				1.	94	558	1750	3 ⁰	бск	нм	c.854G>T		MISSENS E	вотн	Y
					2							c.265C>T		MISSENS		
					3	240	360	1800	30	INS.	HT	c.685G>A		E MISSENS	NONE	Y
MUTA	ATION				4	58	288	2500		KCNJ11	HT	c331del	lc -		F	Y
						2	548	1700		INS	СН	331C>A			вотн	Y
1					5	18	396	3100		IL2 RA-	нм	c.65- ?_819+?c			BOTH HETERO	Y
					6	82	600	2500	3 ⁰		нт	c.601C>T		MISSENS	NONE	Y
					7	02	000	2500	5	KCNJ	пі	c.188-400	C>A		NONE	T
			MISSENSE			70	200	2500						ABERRANT /NONSENS		N
			NONSENSE COMBINED		8	72	380	2500		INS	HT	c.592G>\		e MISSENS	FATHER	Y
			= DELETION		9	123	594	3000	3 ⁰	STAT3	HT			E	FATHER	?
	7				10	240	360	2300		NO						
					11	215	553	2700		NO						
					12	248	396	2500	3 ⁰	NO		c.820G>A		MISSENS		
						5	446	1400	3 ⁰	GCK	нм				MOTHER	Y
					13	180	522	3800	3 ⁰	ABCC8	СН	c.695G>A 0C>T	-	N/M	MOTHER	Y
					14							c.86G>A				
							504	2200	20						MOTHER,	2
						4 AT	594 BIRTH	2200 CONSAN	3º MUTA-	KCNJ11	нт				MOTHER, PAT GM	?
ISAN- NITY	MUTATION	TRAN- SMISSION	PARENTS/KINDRED	AG E	i RBS PRE	AT	BIRTH (WT ·	CONSAN	3 ⁰ MUTA- TION	KCNJ11 TRAN- SMISSION	PARENTS/KII				PAT GM	?
	MUTATION		PARENTS/KINDRED WITH MUTATION	AG	i RBS	S AT SENT	BIRTH (WT ·		MUTA-	TRAN-			ASSOCIA	MISSENSE	-	?
	MUTATION GCK N			AG E	i RBS PRE A- TIO	S AT SENT N	BIRTH (WT -	CONSAN	MUTA- TION	TRAN- SMISSION	PARENTS/KII WITH MUTA	TION /	ASSOCI <i>A</i> FEATURI	MISSENSE ATED ES	INSULIN DOSE	
		SMISSION	WITH MUTATION	AG	i RBS PRE A- TIO	S AT SENT N	BIRTH (WT -	CONSAN	MUTA-	TRAN-	PARENTS/KII	TION	ASSOCIA FEATURI TNDM	MISSENSE ATED ES	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS	SMISSION HM HM HT	WITH MUTATION BOTH MOTHER FATHER	AG E	i RBS PRE A- TIO 288	S AT SENT	BIRTH WT -	Consan Guinity	MUTA- TION	TRAN- SMISSION	PARENTS/KII WITH MUTA	TION	ASSOCIA FEATURI TNDM Devp c	MISSENSE ATED ES lelay. Impr	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58	i RBS PRE A- TIO 288	S AT SENT	BIRTH WT -	Consan guinity	MUTA- TION	TRAN- SMISSION	PARENTS/KII WITH MUTA	TION	ASSOCIA FEATURI TNDM Devp c SU. Pa Mother	MISSENSE ATED ES lelay. Impr rtial transi	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS	SMISSION HM HM HT	WITH MUTATION BOTH MOTHER FATHER	AG E 58	i RBS PRE A- TIO 288	S AT SENT	BIRTH WT 2500 -	Consan guinity	MUTA- TION	TRAN- SMISSION	PARENTS/KII WITH MUTA	TION	ASSOCIA FEATURI TNDM Devp c SU. Pa Mother	MISSENSE ATED ES lelay. Impr rtial transi n other had	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4	600 594	S AT SENT	BIRTH WT 4 2500 4 2500 4 2200 4	CONSAN GUINITY 3 ⁰	MUTA- TION KCNJ11 KCNJ 11 KCNJ11	TRAN- SMISSION HT HT	PARENTS/KII WITH MUTA F NONE MOTHER, PA	TION	ASSOCIA FEATURI TNDM Devp c SU. Pa Mother grandm	MISSENSE ATED ES lelay. Impr rtial transi n other had	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82	600 594	S AT SENT	BIRTH WT 4 2500 4 2500 4 2200 4	CONSAN - GUINITY 	MUTA- TION KCNJ11 KCNJ 11	TRAN- SMISSION HT HT	PARENTS/KII WITH MUTA F NONE	TION	ASSOCIA FEATURI TNDM Devp c SU. Pa Mother grandm mutatic	MISSENSE ATED ES lelay. Impr rtial transi n other had	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4	600 594 0 522	S AT SENT	BIRTH WT 2500 - 2500 - 2200 - 3800 -	CONSAN GUINITY 3 ⁰	MUTA- TION KCNJ11 KCNJ11 KCNJ11 ABCC8	TRAN- SMISSION HT HT	PARENTS/KII WITH MUTA F NONE MOTHER, PA	TION	ASSOCIA FEATURI TNDM Devp c SU. Pa Mother grandm mutatic	MISSENSE	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4 180	600 594 0 522	S AT SENT	BIRTH WT 1 2500 1 2500 1 2200 1 3800 1	CONSAN - GUINITY 3 ⁰ 3 ⁰	MUTA- TION KCNJ11 KCNJ11 KCNJ11 ABCC8	TRAN- SMISSION HT HT CH	PARENTS/KII WITH MUTA F NONE MOTHER, PA	TION	ASSOCIA FEATURI TNDM Devp C SU. Pa Mother grandm mutatic HYPOT JIMMUN DEFICII	MISSENSE	PAT GM INSULIN DOSE 0.1 U/KG	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4 180 180	600 594 0 522	S AT SENT	BIRTH WT 4 2500 4 2500 4 2200 4 3800 4 3100 4	CONSAN - GUINITY 3 ⁰ 3 ⁰	MUTA- TION KCNJ11 KCNJ11 KCNJ11 ABCC8	TRAN- SMISSION HT HT CH	PARENTS/KII WITH MUTA F NONE MOTHER, PA	TION	ASSOCIA FEATURI TNDM Devp d SU. Pa Mother grandm mutatic HYPOTI IMMUN DEFICII	MISSENSE	PAT GM	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4 18 18	 RBS PRE A- TIO 288 600 594 594 396 394 	S AT SENT	BIRTH WT 1 2500 1 2500 1 2500 1 3800 1 3100 1 3000 1	CONSAN - GUINITY 3 ⁰ 3 ⁰ 3 ⁰	MUTA- TION	TRAN- SMISSION HT HT HT CH HM HT	PARENTS/KII WITH MUTA F NONE MOTHER, PA MOTHER	TION	ASSOCIA FEATURI TNDM Devp d SU. Pa Mother grandm mutatic HYPOTI IMMUN DEFICII	MISSENSE	PAT GM	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4 18 18	 RBS PRE A- TIO 288 600 594 594 522 396 	S AT SENT	BIRTH WT 1 2500 1 2500 1 2500 1 3800 1 3100 1 3000 1	CONSAN 	MUTA- TION KCNJ11 KCNJ11 KCNJ11 ABCC8	TRAN- SMISSION HT HT CH HM	PARENTS/KII WITH MUTA F NONE MOTHER, PA MOTHER	TION	ASSOCIA FEATURI TNDM Devp d SU. Pa Mother grandm mutatic HYPOTI IMMUN DEFICII	MISSENSE	PAT GM	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4 18 18 12	 RBS PRE A- TIO 288 600 594 594 396 394 	S AT SENT	BIRTH WT 1 2500 1 2500 1 2200 1 3800 1 3100 1 2300 1	CONSAN - GUINITY 3 ⁰ 3 ⁰ 3 ⁰	MUTA- TION	TRAN- SMISSION HT HT HT CH HM HT	PARENTS/KII WITH MUTA F NONE MOTHER, PA MOTHER	TION	ASSOCIA FEATURI TNDM Devp d SU. Pa Mother grandm mutatic HYPOTI IMMUN DEFICII	MISSENSE	PAT GM	
	GCK N GCK N INS INS N	SMISSION HM HM HT CH	WITH MUTATION BOTH MOTHER FATHER BOTH	AG E 58 82 4 18 18 18 12 24 21	RBS PRE A- TIO 288 600 594 0 522 396 3 594 0 360	S AT SENT	BIRTH WT 1 2500 1 2500 1 2200 1 3800 1 3100 1 2300 1 2300 1 2300 1 2700 1	CONSAN GUINITY 	MUTA- TIONKCNJ11KCNJ11KCNJ11KCNJ11IL2 RA-NSTAT3NO	TRAN- SMISSION HT HT CH HM HT	PARENTS/KII WITH MUTA F NONE MOTHER, PA MOTHER	TION	ASSOCIA FEATURI TNDM Devp d SU. Pa Mother grandm mutatic HYPOTI IMMUN DEFICII	MISSENSE	PAT GM	

- **Correlate the clinical characteristics and follow-up picture to the** genotype.
- **Attempt transition to Sulphonylurea in children with ABCC8 and KCNJ11 mutations.**

Materials & methods

- Patients referred with NDM between the period of Nov 2014 to **April 2017 were included in the study.**
- Retrospective analysis and case finding in patients who were assumed to have Type 1 diabetes mellitus and who were under follow-up, when the clinical phenotype was consistent with monogenic diabetes.
- Details of clinical presentation, birth and family history, clinical phenotype, biochemical data, imaging and management were collected using a standardised proforma.
- Study performed according to the principles of the Declaration of Helsinki with written informed consent given by the patients' parents for genetic analysis. Telephonic consent was also obtained from the parents prior to compiling information for this paper.

Exclusion Criteria

CRITERIA

Inclusion Criteria

- Age at onset <9 months
- Hyperglycemia sustained for \geq 2 weeks
- Insulin dependence

• Exclusion of Hyperglycemia caused by stress and infection and drug therapies.

Highlights

- One of the larger cohorts described recently.
- Good genotype –phenotype correlation
- **Demonstrated DQ improvement with SU therapy**
- **5 novel mutations**
- Genetic evaluation was thorough and included a 29 gene panel.
- Tracking of parents and grand parents and screening
- More Permanent vs transient NDM

Limitations

- Antibody testing to rule out T1DM not financially feasible.
- Could not measure c-peptide prior to and during transition to SU
- Parents of a few children could not be tested due to various reasons like distance, death, diaspora and divorce.

CONCLUSIONS

- Mutations in GCK, KCNJ11 AND INS were the commonest causes of NDM in our cohort.
- Underlying mutations established in 75%.
- More non-KATP channel mutations are likely to reflect the increased rate of consanguinity.
- In countries with more consanguineous marriages, focused searching for rarer causes of NDM and creation of database needs to be done, so that targeted high yield genetic sequencing can be performed

Genetic Analysis

EDTA blood samples of infants and both parents (wherever possible) were sent for molecular genetic analysis.

Genomic DNA was extracted, and the coding regions and intron/exon boundaries of the ABCC8, KCNJ11, INS and EIF2AK3 genes amplified by PCR. **Amplicons were sequenced using the Big Dye Terminator Cycler Sequencing Kit** v3.1 (Applied Biosystems), and reactions were analysed on an ABI 3730 Capillary sequencer (Applied Biosystems)

- Sanger sequencing was used to validate the screened mutations and in parents for inherited or de novo mutations.
- **Confirmed mutations were then searched in the human gene mutation database**

(HGMD), dbSNPI38, thousand genomes, and recent reviews. For all mutations, software Polyphen-2 was used to predict the pathogenicity.

- **Statistical analysis was performed using IBM SPSS 22.0 for Windows**
- statistical software. Wherever feasible, data was expressed as

mean ± S.D.

TABLE 1 CLINICAL CHARACTERISTICS						
S.NO	VARIABLE	MEAN ± SD				
1	MEAN AGE	114 ± 91				
2	MEAN BW	2410 ± 613				
3	MEAN GESTATION	37.28 ± 1.22				
4	MEAN RBS	471 ± 102				
5	MEAN INSULIN DOSE /KG	0.73 ± 0.4				
	BODY WEIGHT					

REFERENCES

- Polak M, Cave H. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis. 2007;2:12.
- 2. Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP: Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 2000;49:1359-1366.
- 3. E De Franco, SE Flanagan, JA Houghton, H Lango Allen, DJ Mackay, IK Temple, S Ellard, AT Hattersley. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015 Sep 5;386(9997):957-63.
- 4. Hattersley, A. T., Beards, F., Ballantyne, E., Appleton, M., Harvey, R., Ellard, S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nature Genet. 19: 268-270, 1998.
- Beltrand et al. Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in 5. **Patients With Neonatal Diabetes Owing to Potassium Channel Mutations. Diabetes Care** 2015;38:2033-2041

