HLA-G gene promoter methylation status in children and P2adolescents with Type 1 Diabetes

<u>Konstantina Mouzaki¹, Eleni P Kotanidou¹, Aikaterini Fragou², Styliani Giza¹, Maria Taousani², Anastasios Serbis¹, Maria Eboriadou-Petikopoulou¹, Georgios Tzimagiorgis², Assimina Galli-Tsinopoulou¹</u>

¹ 4th Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece ² Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Disclosure Statement: All authors declare that they have no conflict of interest

Introduction

HLA-G gene is involved in the control of immune response. It plays a primary role in immune tolerance and may participate in controlling autoimmune responses serving as a potential independent susceptibility marker. HLA-G has been isolated in some secretory granules and on the cell surface of primary islet cells induced to secrete insulin.

Methods

Twenty T1DM participants and 20 age-/gender-matched healthy youngsters

were enrolled.

- DNA was extracted from white blood cells
- Genomic DNA(800ng) was then treated with sodium bisulphate

Results

Methylation profile at 19 CpGs of the HLA-G promoter, was analyzed. HLA-G gene in T1D did not exhibit significant differences regarding the methylation status within its promoter sites compared to healthy individuals.

Figure 2. HLA-G PCR products of mDNA in T1D patients

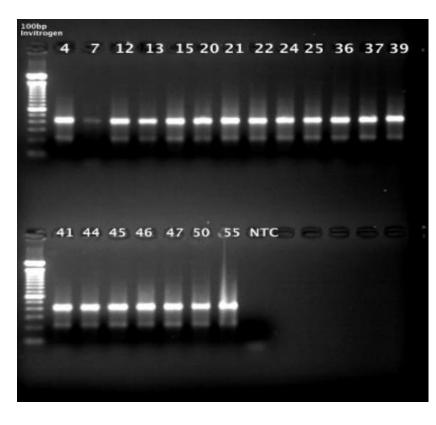


Table 1. Methylation status CpGs of the HLA-G promoters inpatients and controls

using the EZ DNA Methylation-Gold Kit.

•Treatment with sodium bisulfite converts unmethylated cytosines into uracyls, whereas methylated cytosines remain unchanged under the same conditions.

DNA was then amplified by PCR reaction was performed in a total volume of 50 µl targeting a specific sequence of the gene promoters
Amplicons were analyzed by electrophoresis (1% agarose gel stained with ethidium bromide) and visualized by ultraviolet transillumination.

• PCR products were purified and sequenced with Next Generation Sequencing – Illumina, in order to identify DNA methylation changes.

•Comparisons between groups were performed with students t-test or its non parametric analogue, Mann Whitney U test, as appropriate.

19 CpGs in HLA-G ge	ne DNA methylati	DNA methylation (%)		
	T1D (n=20)	Control group (n=20)	p	
	Overall mean m	nethylation percentage		
Mean methylation Range	42.99 ± 5.2 36-51	43.94 ± 4.31 37-52	0.602	
CpG sites				
1-5446	84.69±5.6	86.54±5.8	0.31	
2-5484	87.07±4.6	89.03±3.8	0.16	
3-5550	64.42±8.4	68.55 ± 8.4	0.21	
4-5568	96.45±1.5	96.89±1.3	0.12	
5-5579	97.29±10	97.42±1	0.56	
6-5599	93.09±2.4	93.25±2.5	0.85	
7-5629	87.38±5.8	88.28±4.8	0.60	
8-5652	12.98±5.2	13.95±5.1	0.58	
9-5654	10.83±3.6	11.83 ±4.1	0.42	
10-5690	18.79±7.8	18.92±7.8	0.95	
11-5715	13.67±6.5	14.83±5.3	0.46	
12-5719	31.28±10.9	32.96±9.9	0.65	
13-5772	18.71±6.8	19.21±4.5	0.78	
14-5775	32.09±10.4	33.34±8	0.77	
15-5778	18.18±6.5	19.59±3.5	0.48	
16-5780	14.85±6.6	14.82 ± 4.2	0.98	
17-5801	24.35±9.4	24.78±7.1	0.87	
18-5813	6.22±2.9	7.69 ± 2.5	0.10	
19-5832	4.36 ± 2.68	4.5 ± 1.5	0.35	

Figure 1. HLA-G forward and reverse primers

	Forward primer	Reverse primer
HLA-	5'TCGTCGGCAGCGTCAGATG	5'GTCTCGTGGGCTCGGAGAGATGTGTA
G	TGTATAAGAGACAGTTTTGGT	TATAAGAGAAGACAGTTACATATATAAAT
	TTATGTTGTAGAGT3'	AATAAAATAAAAT3'

Conclusions

Despite the described close association of HLA-G with autoimmunity, we failed to find any methylation differences in HLA-G promoter sites between T1D and controls.

References

1.Kindt A et al.Allele-specific methylation of type 1 diabetes susceptibility genes. J of Autoimun; 2018: 63-74

2.Amiot L et al.Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell Mol Life Sci 2011; 68(3): 417–31.

Sponsored by :Hellenic Association for the Stady and Education of Diabever of the station som

