CAN TRIPONDERAL MASS INDEX BE A NEW INDICATOR IN PREDICTING THE **CARDIOMETABOLIC RISK IN OBESE ADOLESCENTS?**

Gülten Cingöz¹, Berna Eroğlu Filibeli², Gönül Çatlı³, Bumin N. Dündar³

¹Department of Pediatrics, Tepecik Training and Research Hospital, Izmir, Turkey ²Department of Pediatric Endocrinology, Tepecik Training and Research Hospital, Izmir, Turkey ³Department of Pediatric Endocrinology, Katip Celebi University, Izmir, Turkey

Introduction

Body mass index (BMI) is claimed to be unreliable in the determination of body fat and cardiometabolic risk. Waist circumference and waist-toheight ratio (WHtR) are used in the evaluation of cardiometabolic risk, however they have low reproducibility and are unpractical. Triponderal mass index (TMI; weight/height³), however, is suggested to be superior to BMI in determining body fat and obesity.

• Of 247 obese adolescents $(14.8 \pm 1.5 \text{ years}, 158 \text{ female}, 105 \text{ MS})$ involved in the study, BMI $34.1 \pm 4.7 \text{kg/m}^2$; BMI SDS 3.03 ± 0.6 ; TMI $20.8 \pm 2.9 \text{kg/m}^3$, WHtR 0.63 ± 0.06 and body fat ratio was established as $40.1\pm7.4\%$.

- BMI, BMI-SDS, TMI, WHtR) were significantly higher in the MS group (n=105 (Table 1).
- Relationship between BMI, BMI SDS, WHtR, TMI and waist circumference, body fat ratio and metabolic parameters are summarized in Table 2.
- BMI showed a potent correlation with BMI SDS and TMI and moderate correlation with WHtR and BMI.

Objective

In this study, the relation of TMI with body fat ratio and metabolic parameters and its superiority to other indexes in the determination of cardiometabolic risk were examined.

Methods

Obese adolescents with a BMI>95% according to the data of Turkish children were involved in the study. Anthropometric parameters, blood pressures, fasting glucose, lipid levels were measured. Body fat ratio was evaluated with bioelectric impedance analysis. Metabolic syndrome (MS) was described according to International Diabetes Federation (IDF) criteria.

- TMI had no significant correlation with metabolic parameters except that weak correlation with HDL-K, fasting insulin and HOMA-IR.
- In the prediction of MS diagnosis, when diagnostic sensitivity and specifities of TMI, BMI, BMI SDS, WHtR were evaluated with ROC analysis, area under the curve were similar and significantly high (Figure 1).

Table 1. Demographic, anthropometric and metabolic parameters according to presence of metabolic syndrome

	MS(-)(n=142)	MS (+) (n=105)	* P		
Age (year)	$14.8 \pm 1,85$	14.7 ± 1.5	0.646		
Gender (Girls/Boys)	101/41	57/48	0.006		
BMI (kg/m²)	33.1 ± 4.4	35.5 ± 4.7	< 0.001		
TMI (kg/m ³)	20.1 ± 2.8	21.8 ± 2.7	< 0.001		
BMI SDS	2.9 ± 0.5	3.2 ± 0.5	< 0.001		
WHtR	0.62 ± 0.06	0.65 ± 0.06	< 0.001		
Fat mass (kg)	39.9 ± 7.4	39.8 ± 10.8	0.026		
Fat ratio (%)	39.9 ± 7.4	40.4 ± 7.6	0.609		

Table 3. Sensitivity and specificity of different indices to identify
 metabolic syndrome (p < 0.05)

Fasting insulin (IU/L)	21.9 ± 11.8	29.1 ± 17.8	< 0.001
HOMA-IR	4.6 ± 2.6	6.5 ± 4.5	< 0.001

Table 2. Relationship between BMI, BMI index SDS, waist circumference / height ratio, TMI and waist circumference, body fat ratio and metabolic parameters

	Obese (n = 247)								
	BMI (kg/m²)		BMI-SDS		WHtR		TMI (kg/m ³)		
	r	* P	r	* P	r	* P	r	* P	
Vaist ircumference cm)	0.726	<0.001	0.557	<0.001	-	_	0.624	<0.001	
ody fat ratio %)	0.407	<0.001	0.594	<0.001	0.334	<0.001	0.500	<0.001	
asting glucose ng/dl)	0.060	0.350	0.038	0.557	0.035	0.580	0.053	0.410	
riglycerides ng/dl)	0.066	0.308	0.048	0.460	0.044	0.497	0.065	0.309	

İndex	Area	Ρ	Lower treshold	Upper treshold	HDL-K (mg/dl)	-0.220	<0.001 -0.210	0.001	l -0.161	0.011	-0.237	<0.001
TMI (kg/m ³)	0.668	< 0.001	0.601	0.734								
BMI(kg/m ²)	0.637	< 0.001	0.568	0.706	Fasting insulin	0.249	<0.001 0.215	0.001	0.300	<0.001	0.224	<0.001
BMI SDS	0.629	0.001	0.560	0.699	(IU/ML)							
WHtR	0.655	< 0.001	0.588	0.723	HOMA-IR	0.217	0.001 0.200	0.002	0.254	<0.001	0.199	0.002

Conclusion

While TMI shows body fat ratio more accurately compared to BMI and WHtR, it has no superiority to BMI SDS. Nevertheless, since TMI can be calculated more practically compared to BMI SDS, it can be used in predicting body fat ratio. On the other hand, our findings suggest that TMI has no superiority to BMI, BMI SDS, WHtR in displaying cardiometabolic risk.

