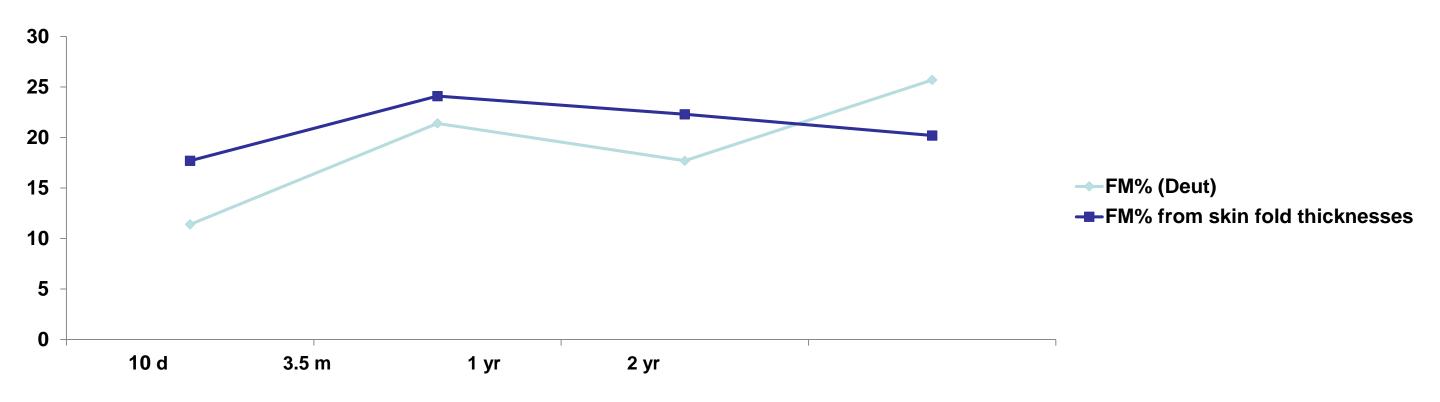

Growth and body composition of term healthy Indian infants from birth to 2 years of age


¹Department of Pediatrics, All India Institute of Medical Sciences, New Delhi ²Department of Physiology, St. John's Medical College, Bengaluru, INDIA

Background

- The average birth weight in India is amongst the lowest in the world, whereas, the prevalence of visceral adiposity, type 2 diabetes and cardiovascular disease is the highest. This paradox may be partially explained by an accelerated pattern of weight gain in early infancy.
- While fetal growth restriction constrains lean mass and metabolic capacity, accelerated growth in early infancy or 'catch-up growth' is associated with a preferential gain in fat mass rapid growth in infancy/ childhood brings about greater gain in fat mass and higher metabolic load.

Objectives

Figure 2. FM% by skinfolds and deuterium

Table 3. Correlation of FM% with anthropometric measurements

Parameter	FM% by deuterium		FM% by skinfold thickness		
	rho	р	rho	Р	

To assess the growth pattern and body composition of term healthy breastfed babies from birth to 2 years.

- To compare the fat mass (FM)% assessed by deuterium dilution technique and skinfold thicknesses.
- To assess the impact of catch-up growth from birth to 3 mo on FM% till 2 y.
- To compare the growth and body composition of low and normal birth weight babies till 2 y.

Subjects and Methods

- Term singleton newborns, with birth weight between 1800-4000 grams, with no congenital anomalies or neonatal illness were recruited at birth from AIIMS, New Delhi.
- Anthropometry, including measurement of skinfold thickness at biceps, triceps, subscapular and supra-iliac sites by Holtain's callipers, was done serially at birth, 10 days, 3.5 months, 1 and 2 years of age.
- Body composition assessment by deuterium dilution method was done in a subset of infants at 10 days, 3 months, 1 and 2 years.
- Deuterium oxide (D2O) was administered orally at a dose of 0.05 mg/kg, and urine samples were collected prior to and at 4 and 5 hours after the dose. Concentration of deuterium was measured by isotope ratio mass spectrometry.
- Total body water was calculated from the plateau enrichment at 4 and 5 h post dose, and fat-free and fat mass (FM) were calculated using known hydration factors.
- FM% was also calculated from the sum of skinfolds using equations proposed

	At birth	N=127		N=241	
WAZ		0.176	0.048	0.643	<0.001
LAZ		-0.025	0.782	0.453	<0.001
BMIZ		0.121	0.171	0.388	<0.001
At	3 months	N=161		N=213	
WAZ		0.171	0.030	0.538	<0.001
LAZ		-0.098	0.217	0.280	<0.001
BMIZ		0.260	0.001	0.212	<0.001
	At 1 y	N=70		N=222	
WAZ		0.252	0.034	0.485	<0.001
LAZ		0.181	0.136	0.094	0.162
BMIZ		0.183	0.127	0.540	<0.001
	At 2 y	N=81		N=185	
WAZ		0.149	0.182	0.482	<0.001
LAZ		0.193	0.084	0.144	0.051
BMIZ		0.086	0.444	0.527	<0.001

Table 4. Comparison of FM% and anthropometry from birth to 2 years in low and normal birth weight babies

Parameter/ Time		BW < 2500 g	BW ≥ 2500 g		P-value			
	Ν	Mean ± SD/ Median	Ν	Mean ± SD/ Median				
		(range)		(range)				
FM% _{D20} at birth	16	10.4 ± 5.4	100	11.6 ±7.7	0.90			
FM% _{D20} at 3.5 m	26	21.8 ± 9.4	125	21.3 ± 6.6	0.75			
FM% _{D20} at 1 y	17	13.2 ± 5.9	51	19.4 ± 8.3	0.004			
FM% _{D20} at 2 y	11	31.3 ± 6.6	70	24.7±10.3	0.011			
FM% skf at birth	40	14.8 ± 3.7	178	17.2 ±3.1	<0.001			
FM% _{skf} at 3.5	38	22.9 ± 3.7	158	24.3 ± 3.0	0.016			
mo								
FM% _{skf} at 1 y	39	21.6 ± 3.0	162	21.9 ± 3.3	0.573			
FM% _{skf} at 2 y	32	20.2 ± 2.4	154	20.2 ± 3.0	0.831			
WAZ at 3.5 m	38	-1.2 (-4.70.6)	157	-0.9 (-3.5 – 1.8)	<0.001			
WAZ at 1 yr	38	-0.8 (-0.3 -1.3)	162	-0.6 (-2.9 – 2.9)	0.031			
WAZ at 2 yr	31	-1.0 (-2.8 – 1.1)	154	-0.7 (-3.2 – 2.5)	0.079			
LAZ at 3.5 m	36	-1.3 (-3.5 -3.4)	157	-0.1 (-3.9 -3.7)	<0.001			
LAZ at 1 yr	38	0.7 (2.5 – 1.23)	161	-0.3 (-4.1 – 3.0)	0.039			
LAZ at 2 yr	32	-1.0 (-3.5 – 1.3)	154	-0.9 (-3.8 – 1.59)	0.423			
BMIZ at 3.5 m	36	-1.8 (-5.6 – 0.4)	157	-1.3 (-5.5 – 2.2)	0.004			
BMIZ at 1 yr	38	-0.7 (3.3 – 2.1)	161	-0.7 (-3.9 – 2.9)	0.312			
BMIZ at 2 yCatch2up growth2in-eaoly infancy24Relationskip4with adiposite								

by Weststrate and Deurenberg (Am J Clin Nutr, 1989).

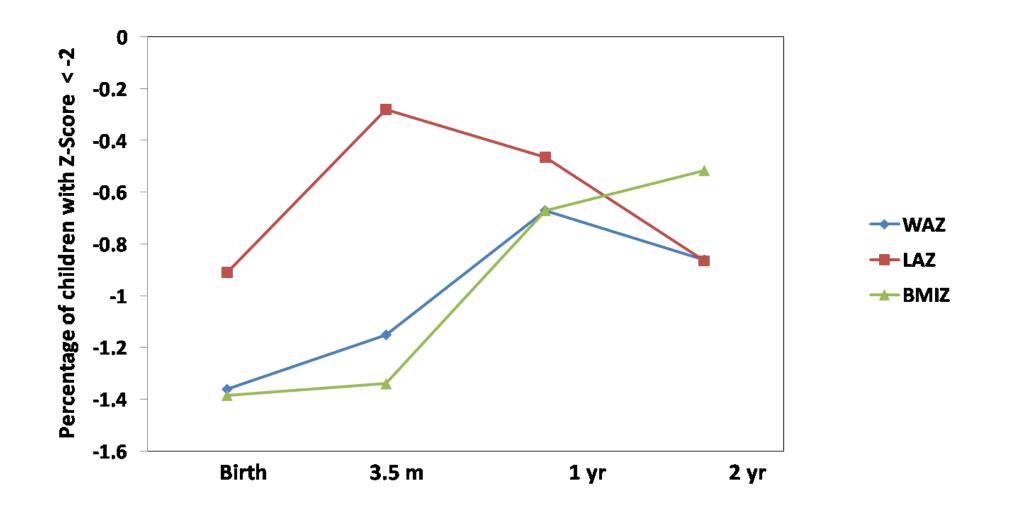

Results

Table 1. Serial anthropometric data from birth to 2 years

Parameters	At birth	3.5 Months	1 Year	2 Years
Ν	276	217	223	186
Age (Days)	0-2	102 ± 14	400 ± 25	743 ± 32
Weight (Kg) WAZ# WAZ <-2*	2.9 ± 0.4 -1.3 (-4.0 – 0.9) 60 (21.4)	5.6 ± 0.8 -1.2 (-4.7 - 1.8) 38 (17.5)	9.0 ± 1.3 -0.7 (-3.1 - 2.9) 24 (10.8)	11.0 ± 1.4 -0.9 (-3.2 - 2.5) 22 (11.8)
Length (cm) LAZ [#] LAZ <-2*	48.4 ± 2.2 -0.9 (-4.2 – 2.9) 40 (14.5)	61.0 ± 3.1 -0.3 (-3.9 - 3.3) 23 (10.6)	75.2 ± 3.1 -0.5 (-4.1 - 3.0) 19 (8.5)	84.6 ± 3.2 -0.9 (-3.8 - 1.6) 18 (9.6)
BMI BMIZ [#] BMIZ <-2*	11.7 ± 1.3 -1.4 (-5.0 – 1.7) 81 (29.3)	15.0 ± 1.8 -1.3 (-5.6 - 2.2) 62 (28.6)	15.9 ± 1.8 -0.7 (-3.9 - 2.9) 20 (9.0)	15.3 ± 1.6 -0.5 (-3.6 - 3.9) 16 (8.6)
FM% calculated from skin fold thicknesses	14.4 ± 3.5	24.0 ± 3.1	21.7 ± 3.2	20.1 ± 2.9

Median (range), * N (%)

♦ Catch up growth (CUG) was defined as ΔWAZ (3.5 mo-birth) ≥ 0.67. Out of 216 infants for whom anthropometric data was available at birth as well as 3 months, CUG was present in 65 (30.9 %).

FM% by skinfolds was higher in infants with CUG at 3.5 mo and 2 y. ΔWAZ showed a positive correlation with FM% at 3.5 mo, 1 y as well as 2 y

Table 5. Catch-up growth in early infancy: Effect on FM%

Time	Comparison of means between those with or without CUG						Correlation between Δ WAZ and		
					FM%				
	Without CUG			With CUG	P-value	Ν	Rho	Р	
	N		N	FM%					

- The median z-scores were negative at all four time points but showed a significant improvement from birth to 3 months.
- ✤ LAZ showed a decline at 1 and 2 years of age, with corresponding improvement in BMIZ.

Table 2. FM% by deuterium and skinfold thickness

Age	10 days	3.5 mo	1 yr	2 yr
N Weight (Kg)	129 3.0 ± 0.5	163 5.6 ± 0.8	70 9.0 ± 1.2	82 11.0 ± 1.4
FM% from skin fold thickness	17.7 ± 3.1	24.1 ± 3.2	22.3 ± 3.6	20.2 ± 2.7
FM% by deuterium	11.5 ± 7.2	21.2 ± 7.6	17.7 ± 8.3	25.7 ± 10.1
Correlation between FM% by skinfold deuterium (Rho) P-value	0.045 0.614	0.089 0.259	0.227 0.060	0.166 0.140

FM% did not differ by gender

Vandana Jain

250--P2

		/ •						
3 mo	150	23.4 ± 3.1	64	25.3 ± 2.7	<0.001	214	0.42	<0.001
1 y	141	21.6± 3.1	55	22.3± 2.9	0.15	196	0.22	0.002
2 y	123	19.9± 2.8	44	20.8 ± 2.3	0.06	167	0.18	0.018

Conclusions

- The growth pattern was characterized by low z-scores for length as well as weight at birth, catch-up in length as well as weight by 3.5 mo, followed by deceleration in length between 3.5 mo to 2 y, and in weight between 1 yr to 2 yr.
- Magnitude of change in weight z-score between birth 3.5 m was positively correlated with FM% at 3.5m, 1 y and 2 y
- FM% measured by skinfolds and deuterium showed poor correlation
- **FM%** assessed by skinfolds was strongly correlated with WAZ, LAZ as well as **BMIZ** at all time points
- LBW infants had comparable FM% to normal BW infants at 2 y, when assessed by skinfold thickness and higher when assessed by deuterium. WAZ and LAZ were lower compared to normal BW infants, but BMIZ was comparable at yr.
- Low birth weight as well as accelerated weight gain in early infancy may contribute to development of greater adiposity in Indians.

