ENDOCRINE AND METABOLIC COMPLICATIONS IN CHILDREN AND ADOLESCENTS WITH SICKLE CELL DISEASE: AN ITALIAN COHORT STUDY

E. Bigi¹, P. Bruzzi², B. Predieri², L. Lucaccioni³, M. Lodi³, A. Pancaldi³, G. Palazzi¹, M. Cellini¹, L. Iughetti^{1,2}

- 1. Oncology-Hematology Pediatric Unit Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- 2. Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- 3. Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy

Introduction and objectives

- > Children with Sickle Cell Disease (SCD) show endocrine complications and metabolic alterations.
- The physiopathology of these conditions is not completely understood: iron overload, ischemic damage, and inflammatory state related to vaso-occlusive crises may be involved ^[1]
- > We aim to evaluate the growth pattern and the endocrine and metabolic alterations in a cohort of children with SCD and to detect the relationship between these conditions and the SCD severity.

Methods

- > Study population: 52 patients [38 homozygous (HbSS) and 14 heterozygous (HbSC); age range 3-18 years]
- Anthropometric [height, body mass index (BMI), arm span, sitting height, target height (TH), and pubertal status] and laboratory [blood cell counts, hemolysis indices, metabolic and nutritional status indices and hormonal blood levels] data were evaluated
- > The SCD severity was defined according to hematological and clinical parameters.
- > Statistical analysis was performed using the program STATISTICA, StatSoft Inc, Tulsa, OK, USA

Results

1. Anthropometric parameters in HbSS patients vs HbSC patients

Anthropometric parameters	HbSS Mean ± SD	HbSC Mean ± SD	P-value	
Age (yr.)	10,44 ± 4,55	13,05± 4,47	0,08	
Height-SDS adjusted for TH (SDS)	0,3 ± 0,9	1,0 ± 0,6	0,027	
z-score BMI (SDS)	-0,7 ± 1,4	0,9 ± 1,1	0,004	

IS

Endocrine/metabolic complications	N°/52	%	M/F	SS/SC
Vitamin D insufficiency (10-30 ng/ml)	33	63.5%	16/17	24/9
Vitamin D deficiency (<10 ng/ml)	11	21.2%	7/4	7/4
GHD	2	3.8%	2/0	2/0
Subclinical hypothyroidism	2	3.8%	1/1	2/0
Hypergonadotopinic hypogonadism	1	1.9%	1/0	1/0
Ovarian insufficiency	1	1.9%	0/1	1/0
Insulin resistance	6	11.5%	2/4	4/2

Height-SDS adjusted for TH and z-score-BMI were significantly higher in HbSC children than in patients with HbSS

The 92% show at least one metabolic and/or endocrine alteration:

- insufficiency/deficiency of vitamin D (84.7%)
- insulin resistance (11.5%),
- growth hormone deficiency (3.8%),
- subclinical hypothyroidism (3.8%)
- hypogonadism (1.9%)

Subjects with HbSS genotype show significant lower levels of

828, 4 vs. 3761.7 ± 773.5 ng/ml) than children with HbSC

IGF-1($211.7 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ vs.} 315.3 \pm 89.3 \text{ ng/ml}$) and IGFBP3 ($3267.1 \pm 93.2 \text{ ng/ml}$) and IG

5. Relationship between values of IGF-1 and parameters of clinical severity

(r 0,51, p < 0,05)

(r -0,44, p < 0,05)

In the study group IGF-1 values were

- positively related with Hb
- negatively related with lactate dehydrogenase (LDH)

Conclusions

- > Metabolic and endocrine alterations are very common in children and adolescents with SCD
- > A regular follow-up is necessary to identify subjects at risk for complications
- > An appropriate treatment to improve the outcome disease and the quality of life of SCD patients is necessary

References:

Barden EM, Kawchak DA, Ohene-Frempong K. et al. Body composition in children with sickle cell disease. Am J Clin Nutr 2002;76:218-225 Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet 2010;376:2018-2031.

