Assessment of the gonadotrophin-gonadal axis and Sertoli cell function in partial androgen insensitivity syndrome

Doaa Khater, Magdy Omar, Shaymaa Raafat

Department of Pediatrics, Faculty of Medicine, Alexandria University, Egypt

Objectives:

Androgen insensitivity syndrome (AIS) is the largest single entity that leads to male under-masculinization. Although adequate serum concentrations of testosterone exclude a defect in testosterone biosynthesis, a low testosterone value at baseline does not always exclude PAIS. OBJECTIVE To study the value of measuring basal and human chorionic gonadotropin (HCG) stimulated testosterone level, Dihydrotestosterone, anti-mullerian hormone (AMH) and Inhibin levels in 9 prepubertal children with the final diagnosis of partial androgen insensitivity syndrome (PAIS)

Methods:

Retrospective study of patients in Alexandria University Ped Endocrine clinic, Alexandria, Egypt. Patients included 9 cases of PAIS (mean age = 8.2 months ± 2.3) A single dose HCG stimulation protocol was used (1500U/m2). Measurements included pre-HCG and post-HCG serum testosterone values, serum DHT values, and serum AMH and inhibin were measured and analyzed.

Results:

The mean testosterone rise following fixed dosage of HCG was 94.5 times the basal value. 5/9 patients had low basal testosterone. The mean stimulated testosterone: DHT ratios were 11.3. AMH was High to normal in 8/9 patients and Inhibin was high to normal in 7/9 patients and low in 2/9 patients.

Conclusions:

Basal testosterone may not be raised during early infancy in patients with PAIS; however testosterone rise after HCG stimulation is adequate. The elevation of serum AMH and inhibin level appears to be an interesting marker of androgen resistance in sexually ambiguous male infants.

References:

- 1. Erdogan S, Kara C, Ucakturk A, Aydin M. Etiological classification and clinical assessment of children and adolescents with disorders of sex development. J Clin Res Pediatr Endocrinol 2011; 3(2):77-83.
- 2. Ostrer H. Disorders of sex development (DSDs): an update. J Clin Endocrinol Metab 2014; 99(5):1503-9.
- 3. Hafez M, El Dayem SM, El Mougy F, et al. The role of anti-Mullerian and inhibin B hormones in the evaluation of 46, XY disorders of sex development. J Pediatr Endocrinol Metab 2014; 27(9-10):891-9.
- 4. Meachem SJ, Nieschlag E, Simoni M. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur J Endocrinol 2001; 145(5): 561-71.
- 5. Mendonca BB, Domenice S, Arnhold IJ, Costa EM. 46, XY disorders of sex development (DSD). Clin Endocrinol (Oxf) 2009; 70(2):173-87.
- 6. Atta I, Ibrahim M, Parkash A, Lone SW, Khan YN, Raza J. Etiological diagnosis of undervirilized male XY disorder of sex development. J Coll Physicians Surg Pak 2014; 24(10):714-8.
- 7. Baetens D, Mladenov W, Menten B, et al. Extensive clinical, hormonal and genetic screening in a large consecutive series of 46, XY neonates and infants with atypical sexual development. Orphanet J Rare Dis 2014; 9(1):209-21.
- 8. Moradi M, Alemi M, Moradi A, Izadi B, Parhodah F, Torkaman AF. Does inhibin B help us to confidently refuse diagnostic testicular biopsy in azoospermia? Iran J Reprod Med 2012; 10(3):243-8.
- 9. Ismail SI, Mazen IA. A study of gender outcome of Egyptian patients with 46, XY disorder of sex development. J Sex Dev 2010; 4:285-91.
- 10.Massanyi EZ, Dicarlo HN, Migeon CJ, Gearthart JP. Review and management of 46, XY disorders of sex development. J Pediatr Urol 2013; 9(3):368-79.
- 11.Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 1995; 16(3):271-321.

