GROWTH HORMONE DEFICIENCY IN IDENTICAL TWINS WITH GITELMAN SYNDROME DUE TO COMPOUND HETEROZYGOUS MUTATION (p.R80fs*35/p.K957X) IN THE SLC12A3 GENE AND RESPONSE TO GROWTH HORMONE REPLACEMENT THERAPY

Betül Yaman¹, Kübra Çeleğen², Emine Korkmaz², Naz Güleray Lafçı³, Zeynep Balık⁴, Nesrin Taş², Hüseyin Demirbilek¹, Ali Düzova²

¹Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology

²Hacettepe University Faculty of Medicine, Department of Pediatric Nephrology

³Hacettepe University Faculty of Medicine, Department of Genetic

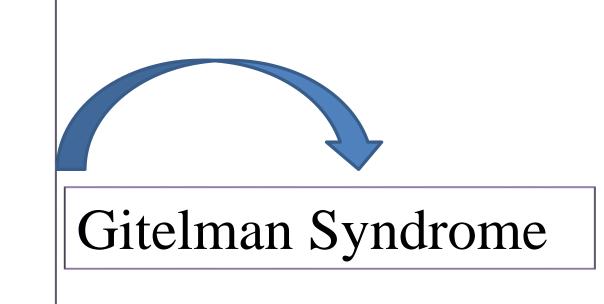
⁴Hacettepe University Faculty of Medicine, Department of Pediatrics

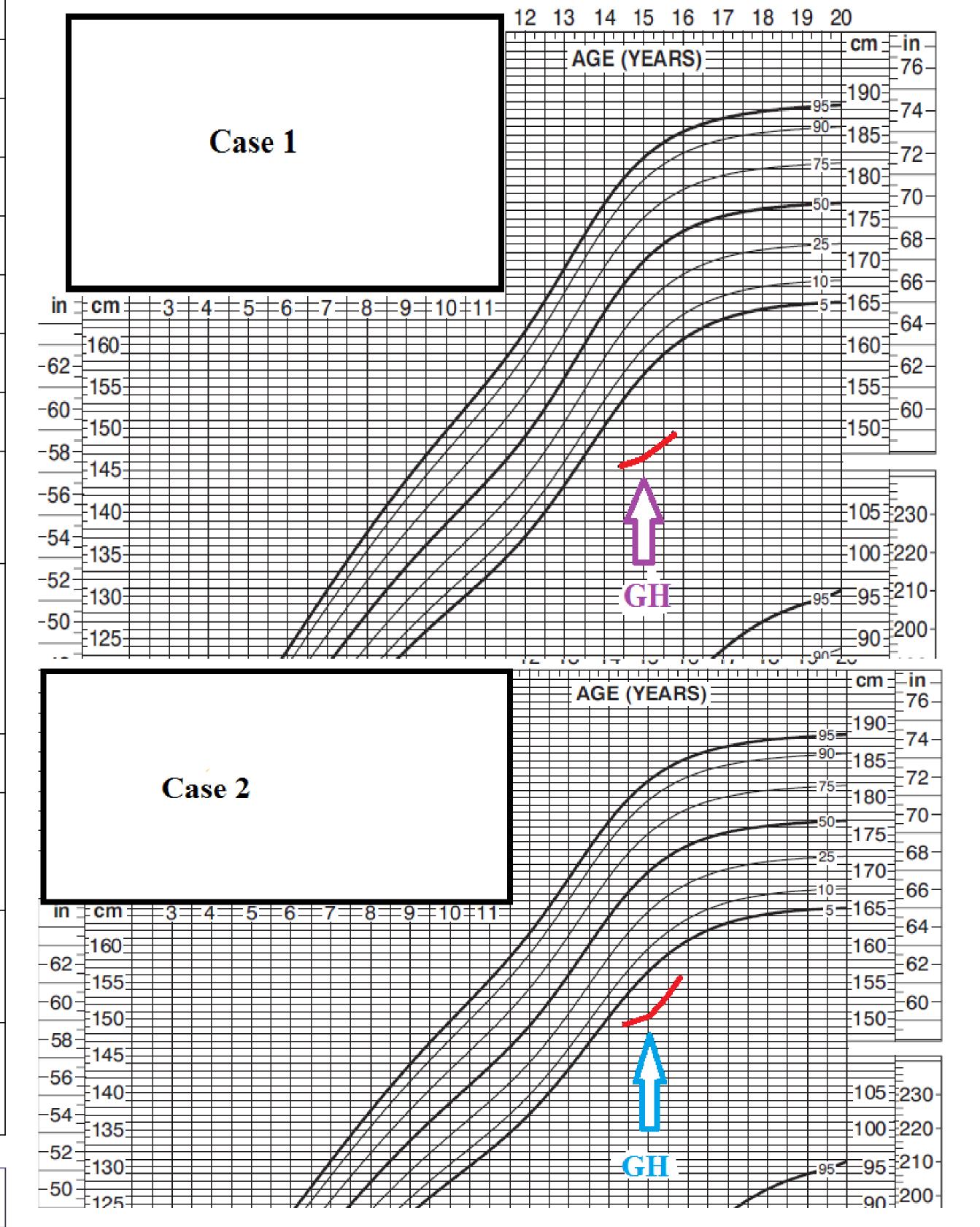
Gitelman syndrome, a rare autosomal recessive disorder, is characterised with hypokalemic metabolic alkalosis, hypomagnesemia and hypocalciuria. Mutations in the *SLC12A3* gene, which encodes for "Thiazid sensitive sodium chloride co-transporter channels" located at the renal distal convoluted tubules, account for the underlying molecular mechanism of Gitelmann syndrome. Although, is less frequent than those seen in "Bartter Syndrome", the exact mechanism of growth retardation in Gitelman syndrome has not been elucidated. We, herein, present two identical twins, with the diagnosis of Gitelman syndrome, due to a compound heterozygous mutation in *SLC12A3*, associated with GH deficiency and the response to the rhGH therapy.

CASE

Male twins

- >>> Short sature >>> Noticed about the age of 8-10 years
- >>> History: Replacement therapy for hypomagnesemia and hypokalemia


Clinical and laboratory values of the cases		
	Case 1	Case 2
Age at presentation	14.4	14.4
Weight (kg)	32.7	35.5
Height (cm)	145.5(-2.88 SD)	149.2(-2.39 SD)
Testicular volume(ml)	4/4-6/6	4/6-8/8
Bone Age (years)	10	13
IGF1 (ng/ml)	80.7 (-2.41 SD)	110.7(-2.06 SD)
IGFBP3 (ng/ml)	2219(-2.31 SD)	2124(-2.37 SD)
Growth rate (cm/years)	1.6	3.2
L-Dopa test peak GH	4.6	0.09
(ng/ml)		
Clonidine test peak GH	4.32	0.716
(ng/ml)	(Priming with sex	
	steroid)	
GH dose(mg/day)	0.033	0.033
Growth rate with GH	5.1	6.9
therapy (cm/year)		
IGF1(Under GH therapy)	293.4	296.0
(ng/ml)		
Mutation analysis of	p.R80fs*35/p.K957X	p.R80fs*35/p.K957X
SLC12A3		


Pituitary MRI and other pitutary hormones were normal for both cases

Na:137/137 mEq/l K:1.99/2.38 mEq/l pH:7.47/7.47

HCO3:36.2/39.4mMol/l Mg:1.19mg/dl/1.47

U-Ca/U-creatinin:0.05/0.05

Partial response to the GH replacement therapy

Frequent hospital admissions due to recurrent episodes of electrolyte imbalance

CONCLUSION

Gitelmann syndrome patients with short stature should be investigated for GH-IGF-1 axis disturbances. For an optimal growth, in addition to correcting serum potassium levels, GH replacement may be considered. However, in order to further evaluate the response to GH replacement therapy, more experiences are required.

