UNIVERSITY OF

Developmental regulation of obestatin and adropin in Prader-Willi syndrome and non-syndromic obesity: associations with weight, BMI-z, HOMA-IR, and lipid profile

Camila E. Orsso¹, Andrew A. Butler², Michael J. Muehlbauer³, Huaxia N. Cui³, Daniela A. Rubin⁴, Mohammadreza Pakseresht¹, Merlin G. Butler⁵, Carla M. Prado¹, Michael Freemark⁶ and Andrea M. Haqq^{1,7}.

¹ Department of Agricultural, Food and Nutritional Science, University of Alberta; ² Department of Pharmacology and Physiology, Saint Louis University School of Medicine; ³ Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center; ⁴ Department of Kinesiology, California State University; ⁵Departments of Psychiatry, Behavioral Sciences, and Pediatrics, Kansas University, ⁶ Division of Pediatric Endocrinology, Duke University Medical Center; ⁷ Department of Pediatrics, University of Alberta

18 (85.7%)

GH treatment

INTRODUCTION

Table 1. Chara	acteristics of in	fants	Table 2. Characteristics of children				
Variables	PWS infants (n = 21)	Control infants (n = 17)	P-value ^b	Variables	PWS children (n = 14)	Control children (n = 14)	
Age (months) ^a	15.5 (10.7, 31.9)	27.3 (10.4, 45.6)	0.82	Age (years)	11.4 (7.1, 14.9)	12.0 (10.3, 14.6)	
Sex	12 male, 9 female	8 male, 9 female	N/A	Sex	9 male, 5 female	6 male, 8 female	
Weight for age z- score	-0.99 (-1.71, 0.98)	0.16 (-0.46, 0.94)	0.09	Body mass index z-score	2.2 (1.5, 2.6)	2.3 (1.8, 2.7)	
PWS subtype				PWS subtype			
Deletion	11 (52.4%)	-	-	Deletion	9 (64.3%)	-	
UPD	9 (42.9%)	-	-	UPD	4 (28.6%)	-	
Undetermined	1 (4.7%)	-	-	Undetermined	1 (7.1%)	-	

RESULTS

P-value^b

0.38

N/A

0.87

9 (64.3%)

The peptides obestatin and adropin are thought to regulate glucose and lipid metabolism and weight gain in adults^{2,3,4}. However, the roles of obestatin and adropin in the regulation of weight and glucose and lipid metabolism in PWS and non-syndromic pediatric obesity are poorly understood.

OBJECTIVES

- To compare the concentrations of obestatin, ghrelin to obestatin ratio, and adropin in infants and children with PWS and age- and BMI-z matched controls.
- To explore the associations between obestatin 2. and other and adropin energy-regulating hormones.

METHODS

Study design: Secondary analysis of crosssectional studies on hormonal and metabolic characteristics of individuals with PWS^{5,6}.

Ghrelin (pg/mL) ^a	2190.0 (1502 5, 2002 5)	1980.0 (1644.6,	0.06	Ghrelin (pg/mL)	1468.5	836.7	~ 0 0005
	(1593.5, 3283.5)	2240.5)			(1133.4, 1659.1)	(712.9, 918.6)	< 0.0000
Leptin (ng/mL) ^a	6.29 (3.50, 7.09)	3.47 (2.64, 5.13)	0.01	Leptin (ng/mL)	31.45 (12.78, 48.84)	32.24 (14.92, 54.71)	0.86
Insulin (µIU/mL) ^a	7.66 (6.29, 10.20)	5.94 (4.45, 7.36)	0.01	Insulin (µIU/mL)	13.49 (10.02, 29.48)	23.20 (17.08, 35.50)	0.03
Glucose (mg/dL) ^a	85.20 (76.40, 88.80)	81.00 (77.80, 85.00)	0.99	Glucose (mg/dL)	87.75 (80.88, 101.69)	94.88 (88.25, 99.56)	0.52
HOMA-IR ^a	1.60 (1.29, 2.13)	1.15 (0.93, 1.56)	0.03	HOMA-IR ^a	3.20 (2.38, 5.80)	5.11 (4.10, 8.92)	0.02

GH treatment

Values are median (25th percentile, 75th percentile) unless otherwise indicated. a Variables were transformed logarithmically for statistic analysis, but present here as raw values. b P-values determined using independent t-test (Pearson). Statistically significant differences are in bold type (p ≤ 0.05). GH, growth hormone; HOMA-IR, homeostatic model assessment-insulin resistance; PWS, Prader-Willi syndrome, N/A: not applicable; UPD, uniparental dysomy.

OBJECTIVE 1 – Obestatin, ghrelin to obestatin ratio, and adropin concentrations in infants and children with PWS and controls

Figure 1: Median changes in fasting (A) obestatin concentrations, (B) ghrelin to obestatin ratio, and (C) adropin concentrations during development in Prader-Willi syndrome (PWS) and controls.

* Statistically significant differences between infants and children (p ≤ 0.05). 🕇 Statistically significant differences between PWS and controls (p ≤ 0.05).

Participants: Infants and children with PWS and controls of similar age and BMI-z score were recruited from clinics at Duke University.

- (Yanaihara Assays: Plasma fasting obestatin Institute, Shizuoka, Japan) and adropin (Peninsula Laboratories, San Carlos, CA) were measured in duplicate using ELISAs. Data from additional hormones were included here^{5,6}.
- The ratio of ghrelin to obestatin was calculate as a measure of differential processing of

Growth hormone treatment had no effects on obestatin or adropin in PWS children.

OBJECTIVE 2 – Correlation between obestatin, adropin and other energy-regulating hormones

- Obestatin was significantly correlated with adropin in all groups (r=0.54-0.75, all p≤0.05).
- Adropin correlated with fasting glucose in children with PWS (r=0.78, p<0.01)
- Obestatin correlated with BMI z-score (r=0.81, p<0.0005), leptin (r=0.66; p=0.01), and HOMA-IR (r=0.69, p=0.01) in control children.

Figure 2. Box plots showing the differences of high-density lipoprotein (HDL) cholesterol, low-density

preproghrelin.

- **Statistics analysis:** Data are presented as $(25^{th}, 75^{th}).$ median and interquartile range Comparisons were performed using Independent Student's t-tests, after logarithmic or inverse transformation.
- Pearson's (r) correlation coefficient was used to evaluate correlations between obestatin and adropin levels, and with other metabolic biomarkers.

lipoprotein (LDL) cholesterol, triglycerides (TG), and total cholesterol between children with PWS (n=14) and controls (n=14). Data were not available for infants. * $p \le 0.05$ by Independent t-test.

CONCLUSIONS

- Infants with PWS had higher obestatin concentrations than control subjects of similar age and BMI.
- Fasting adropin concentrations in older PWS children were related to glucose levels in the higher (but normal) range, but not with other markers of metabolism or insulin resistance.
- Changes in the ratio of ghrelin to obestatin during childhood suggest developmental changes in the processing of preproghrelin and differential processing in PWS and control subjects.

REFERENCES: 1. Miller JL et al. Nutritional phases in Prader-Willi syndrome. Am J Med Genet Part A 2011; 155: 1040-1049. 2. Pradhan G et al. Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R. Sci Rep. 2017;7(1):1-10. 3. Gao S et al. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Mol Metab. 2015;4(4):310-324. 4. Stein LM et al. Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19. Am J Physiol - Regul Integr Comp Physiol. 2016;310(6):R476-R480. 5. Haqq AM et al. The metabolic phenotype of Prader-Willi syndrome (PWS) in childhood: Heightened insulin sensitivity relative to body mass index. J Clin Endocrinol Metab. 2011;96(1):225-232. 6. Haqq AM et al. Ghrelin concentrations in Prader-Willi syndrome (PWS) infants and children: changes during development. Clin Endocrinol (Oxf) 2008; 69: 911-920.

