RFC12.5

Insulin gene promoter methylation status in Greek children and adolescents with Type 1 Diabetes

<u>Konstantina Mouzaki¹</u>, Eleni P Kotanidou¹, Aikaterini Fragou², Styliani Giza¹, Angeliki Kleisarchaki¹, Vasiliki Rengina Tsinopoulou¹, Anastasios Serbis ¹, Georgios Tzimagiorgis², Assimina Galli-Tsinopoulou¹

¹ 4th Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece

² Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Disclosure Statement: All authors declare that they have no conflict of interest

Introduction

Insulin (INS) gene is reported to be the most important gene involved in T1DM; its expression is inversely correlated with methylation at CpG sites. Hypermethylated primers are associated with decreased expression.

Methods

Twenty T1DM participants and 20 age-/gender-matched controls were enrolled.

- DNA was extracted from white blood cells
- Genomic DNA(800ng) was modified using the EZ DNA Methylation-Gold Kit.
- •Treatment with sodium bisulfite converts unmethylated cytosines into uracyls, whereas methylated cytosines remain unchanged under the same conditions.
- DNA was then amplified by PCR in a total volume of 50 μ l targeting a specific sequence of the gene promoters.
- •Amplicons were analyzed by electrophoresis (1% agarose gel stained with ethidium bromide) and visualized by ultraviolet transillumination.
- PCR products were purified and sequenced with Next Generation Sequencing – Illumina, in order to identify DNA methylation changes
- •Comparisons between groups were performed with students ttest or its non-parametric analogue, Mann Whitney U test, as appropriate.

Figure 1. INS forward and reverse primers

	Forward primer	Reverse primer	
INS	5'TCGTCGGCAGCGTCAGAT GTGTATAAGAGACAGTATTT TGGAATTTTGAGTTATT3'	5'GTCTCGTGGGCTCGGAGATGTGT ATAAGAGACAGAACAAAAATCTAAA AACAACAA3'	

Results

Methylation profile at 10 CpGs of the INS promoter, was analyzed. A statistically significant difference in INS gene between the two groups concerning the methylation at position 2-4553 (p=0.046) was detected, while a trend (p=0.06) at position 7-4796 was observed.

Figure 2. INS PCR products of mDNA in diabetic patients and control group

Table 1. Methylated CpGs of the INS promoters in patients and controls

10 C C ' INC			
10 CpGs in INS gene	DNA methylation (%)		
	T1D	Control group	p
	(n=20)	(n=20)	
	Overall mean methylation percentage		
Mean methylation	84.13 ± 3.6	82.28 ± 2.8	0.084
Range	77-92	76-87	
CpG sites			
2-4553	96.32 ±2.2	93.28 ±4.5	0.02
1-4541	94.00±5	90.78 ±7.9	0.15
3-4664	91.02 ± 6.3	89.58 ±8.4	0.65
4-4692	63.16±8.9	62.30 ±9.8	0.86
5-4718	85.78±6.6	84.35 ±9.9	0.82
6-4763	56.65 ±9.8	52.82 ±1	0.25
7-4796	90.01 ±3.6	86.53 ±6	0.06
8-4829	80.28±6.2	77.72 ±8.4	0.32
9-4879	91.51 ±5.2	89.05 ±9.2	0.67
10-4960	96.37 ±2.7	97.91 ±1.3	0.10

Conclusions

These preliminary data suggest that a tendency for increased methylation in INS promoter already exists in T1D in childhood. Studies with greater number of participants are needed to confirm these findings.

References

- 1. Fisher M.M. et al, Elevations in circulating methylated and unmethylated preproinsulin DNA in New-Onset Type 1 Diabetes. Diabetes, vol 64,Nov2015;3867-72
- 2. Zhang K et al. Circulating unmethylated insulin DNA as a potential non-invasive biomarker of beta-cell death in type 1 Diabetes: a review and future prospect. Clinical Epigenetics (2017) 9:44

Sponsored by :Hellenic Association for the Study and Education of Diabetes Mellitus

