Functional characterization of a novel KLF11 mutation identified in a family with autoantibody-negative type 1 diabetes

Ushijima K.¹⁾, Kawamura T²⁾, Ogata T.³⁾, Yokota I.⁴⁾, Sugihara S.⁵⁾, Narumi S.¹⁾, Fukami M.¹⁾ The Japanese Study Group of Insulin Therapy for Childhood and Adolescent Diabetes.

¹⁾National Research Institute for Child Health and Development, ²⁾Osaka City University School of Medicine, ³⁾Hamamatsu University School of Medicine, ⁴⁾Shikoku Medical Center for Children and Adults, ⁵⁾Tokyo Women's Medical University Medical Center East

Introduction

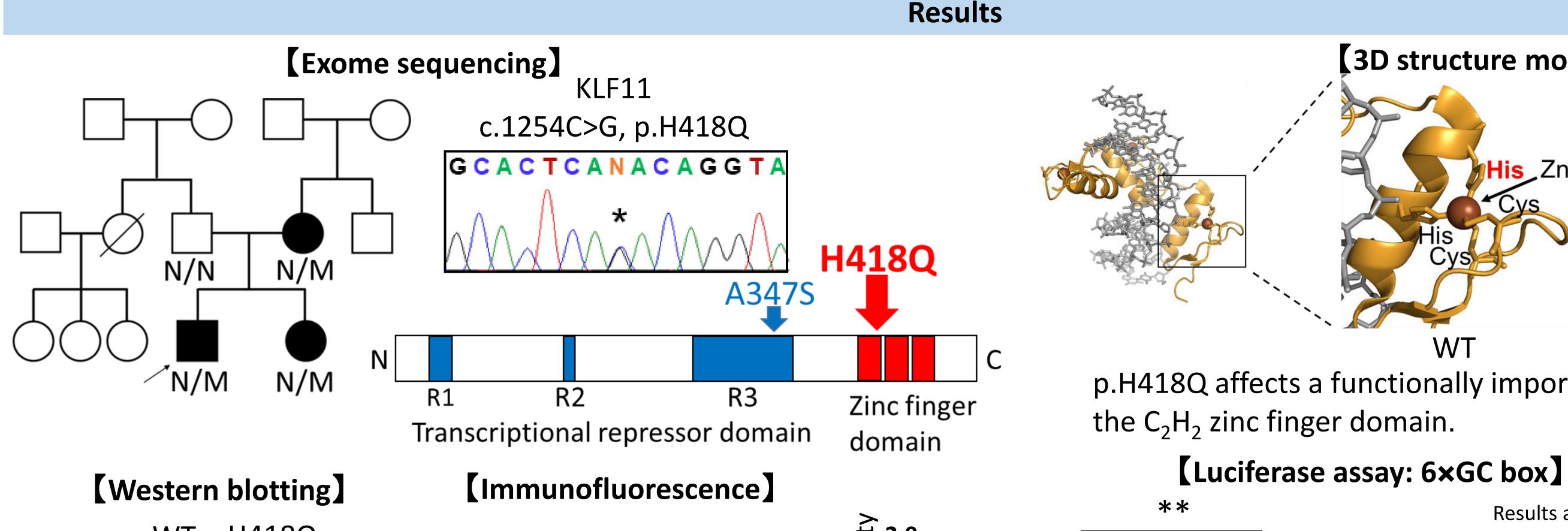
- KLF11 is a transcription factor that is ubiquitously expressed in human tissues, including islet cells and exocrine pancreas.
- Klf11 knock-out mice showed lower serum insulin levels than wildtype mice, indicating that decreased KLF11 expression level causes impaired glycaemic regulation¹⁾.
- To date, two KLF11 mutations (p.A347S, p.T220M) have been identified in three families clinically diagnosed with type 2 diabetes²⁾.

Our case **Proband** Sister Mother Age at diagnosis (yr) DKA at diagnosis No No No Age at last examination (yr) 10 15 44 BMI at last examination (kg/m², SDS) 18.5, 0.6 22.2, 0.7 19.0, -1.0 Fasting serum C-peptide at last 0.4 0.6-1.2 0.4 examination (ng/mL) Required insulin at last examination 1.0 1.0 0.6 (units/kg/day)

They were diagnosed with autoantibody-negative type 1 diabetes (T1D).

Methods

Mutation detection:


Exome sequencing and Sanger sequencing

Evaluation of the *KLF11* **variants:**

3D structure modeling Western blotting Immunofluorescence Luciferase assay

- CHO cells
- Transient transfection
- *six tandem repeats of a KLF11-binding site - 6xGC-luc*

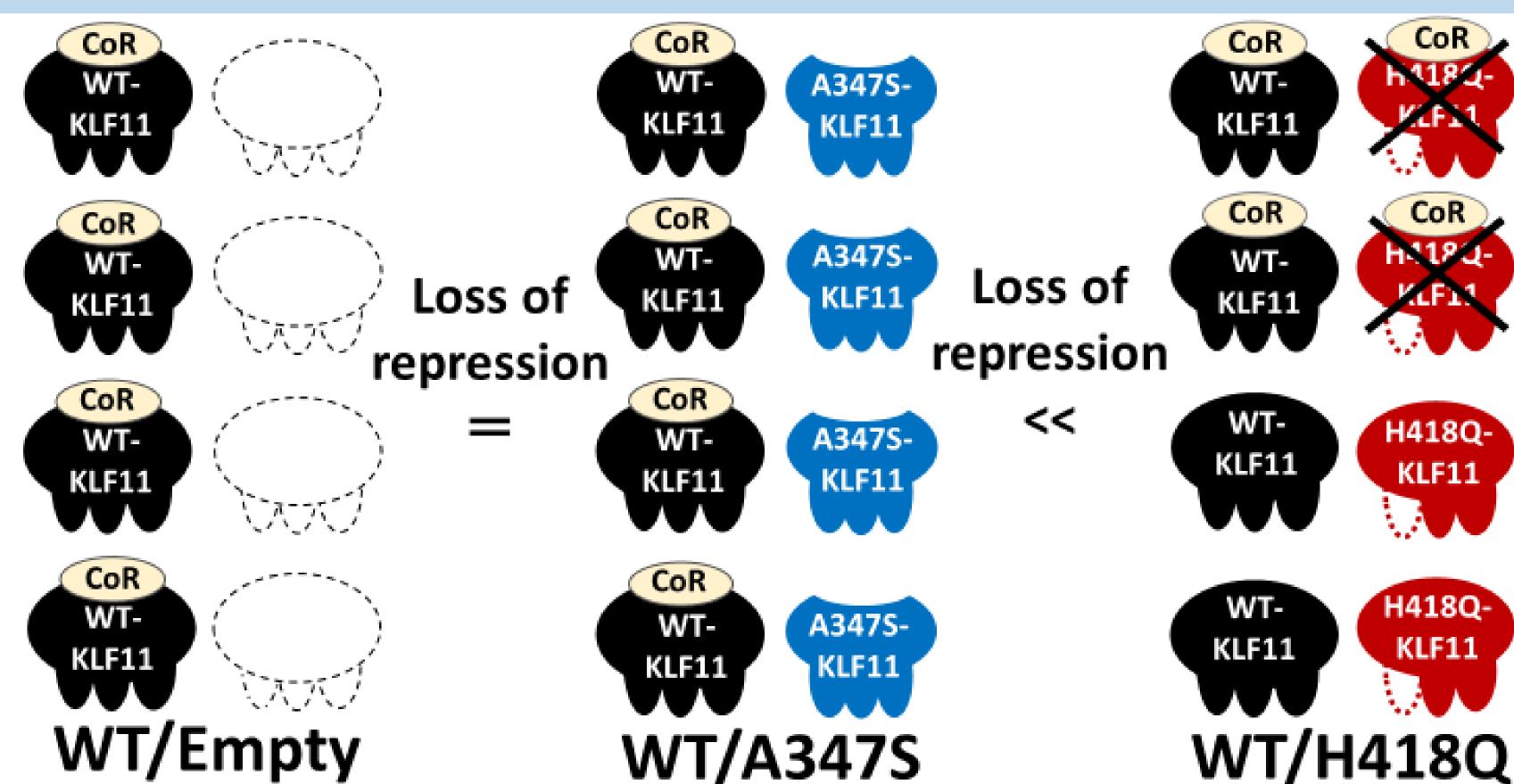
CoR KLF11 - 6xGC box luc

[3D structure modeling] WT H418Q

p.H418Q affects a functionally important histidine residue in the C_2H_2 zinc finger domain.

H418Q Induction (-) 75 kDa-WT FLAG-KLF11 H418Q DNA: blue KLF11: red 25 kDa-

The protein expression level and intracellular localization of H418Q-KLF11 were comparable with WT-KLF11.


Results are expressed as the mean \pm S.E.M. activity **1.5** **p*<0.05, ***p*<0.005, *t*-test **1.5** -1.5 ** Relative luciferase 1.0 1.0 0.5 0.5 -0.0 WT A347S H418Q WT/Empty WT/A347S WT/H418Q **Empty Empty**

H418Q-KLF11 and A347S-KLF11 demonstrated significantly decreased transcriptional repression activities. Co-expression of H418Q-KLF11 with WT-KLF11 caused significant loss of repression, indicating that H418Q-KLF11 had a dominant-negative effect.

• For the first time, we identified the *KLF11* mutation-carrying family with antibody-negative "T1D".

- In our study, H418Q-KLF11 had a dominant-negative effect, which could possibly explain severer phenotypes observed in our patients than in previously reported patients.
- KLF11 is known to cause transcriptional repression by direct interaction with the scaffold corepressor protein $Sin 3A^{3,4}$. A347S-KLF11 is defective in corepressor binding, although do not interfere the binding between WT-KLF11 and corepressors.
- Contrastingly, the binding between WT-KLF11 and corepressors was interfered by H418Q-KLF11, probably through competitive bindings to the corepressors.

Discussion

Conclusion

KLF11 mutation with the dominant-negative effect is likely to be associated with the T1D-like phenotype.

