Molecular diagnosis of patients with 46,XY differences P1-129 in sex development in a single tertiary center.

MS Touzon, N Pérez Garrido, P Ramírez, R Marino, E Berensztein, M Costanzo, G Guercio, MA Rivarola, A Belgorosky.

Hospital de Pediatría Garrahan, Argentina

Authors have nothing to disclose

INTRODUCTION

Differences/disorders of sex development (DSD) comprise a group of congenital conditions, affecting human sex determination and/or differentiation. Patients with DSD are classified in: sex chromosome DSD; 46,XY DSD and 46,XX DSD.

46,XY DSD include defects in androgen synthesis or action, or disorders of gonadal development with complete (CGD)/partial (PGD) gonadal dysgenesis.

OBJECTIVE

The aim of this study was to characterize the molecular genetic diagnosis of individuals with 46,XY DSD followed at Garrahan Pediatric Hospital.

CLINICAL MATERIAL AND METHODS

- Medical records of 140 patients (P) followed at the Endocrinology Department because of 46,XY DSD were reviewed. DNA samples were obtained in 87/140.

• Subjects were divided into 3 groups (G1, G2, G3) based on clinical characteristics, hormonal measurements, gonad histology and ultrasound/laparoscopic findings: G1: defects in androgen synthesis (n=8), G2: defects in androgen action (n=39) and G3: disorders of gonadal development CGD/PGD (n=40).

	Candidate gene sequencing	Copy number variations ¹	Targeted gene panel ^{2,3}	Whole exome sequencing ³
G1	StAR, CYP17A1, HSD3B2, POR			
(n=8)	or SRD <i>5A2</i>			
G2				
(n=39)	AR			
G3 (n=40)	SRY, NR5A1 and/or WT1	S <i>RY, SOX9, NROB1, NR5A1</i> and <i>WNT4</i> by MLPA. Whole genome CGH in 4 P	AKR1C2, AKR1C4, AMH, AMHR2, AR, ARX, ATRX, CBX1, CBX2, DHCR7, DHH, DMRT1, DMRT2, EMX2, FGF9, GATA4, HHAT, LHCGR, MAMLD1, MAP3K1, NR0B1, NR5A1, ROCK1, RSPO1, SOX10, SOX3, SOX8, SOX9, SRY, STARD8, TSPYL1, VAMP7, WNT4, WT1, WWOX, ZFPM2.	In the remaining undiagnosed individuals
both in DNA f available, gon	sed by MLPA (Intersex P185 C2 from peripheral blood leukocyt nadal tissue. In 4 P whole geno print G3 Human CGH Microarra	tes and, when frole in gonad me CGH development	nes known to cause XY DSD or known to play a lal differentiation and genitourinary tract t. b t. b t. b t t t t t t t t t t t t	

(Agriefit Sureprint GS numan CGn Microarray 4A160K) was performed.

RESULTS									
	Candidate gene sequen	cing	Whole genome CGH						
G1	G2	G3	G3						
<i>StAR</i> ¹ IVS1-2G>A	AR ² p.Trp399Valfs*95	SRY p.Met64Val	 127kb duplication in 3p25.2 implicating 11 of the 16 coding exons of RAF1 gene, previously described in patients with isolated cryptorchidism. 						

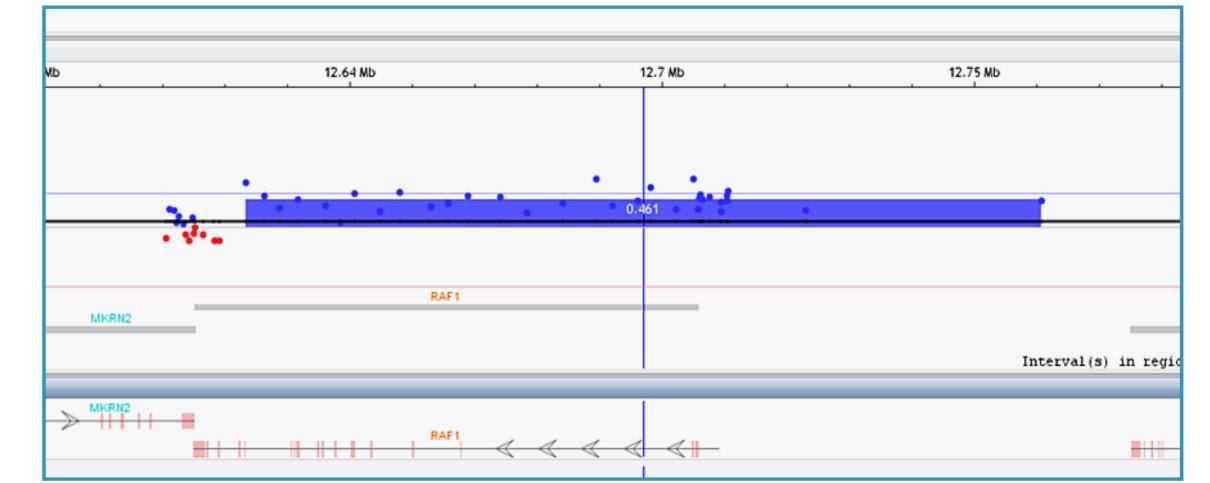
CYP17A1 p.[Arg358Gln];c.[1434-1437dupCATC]

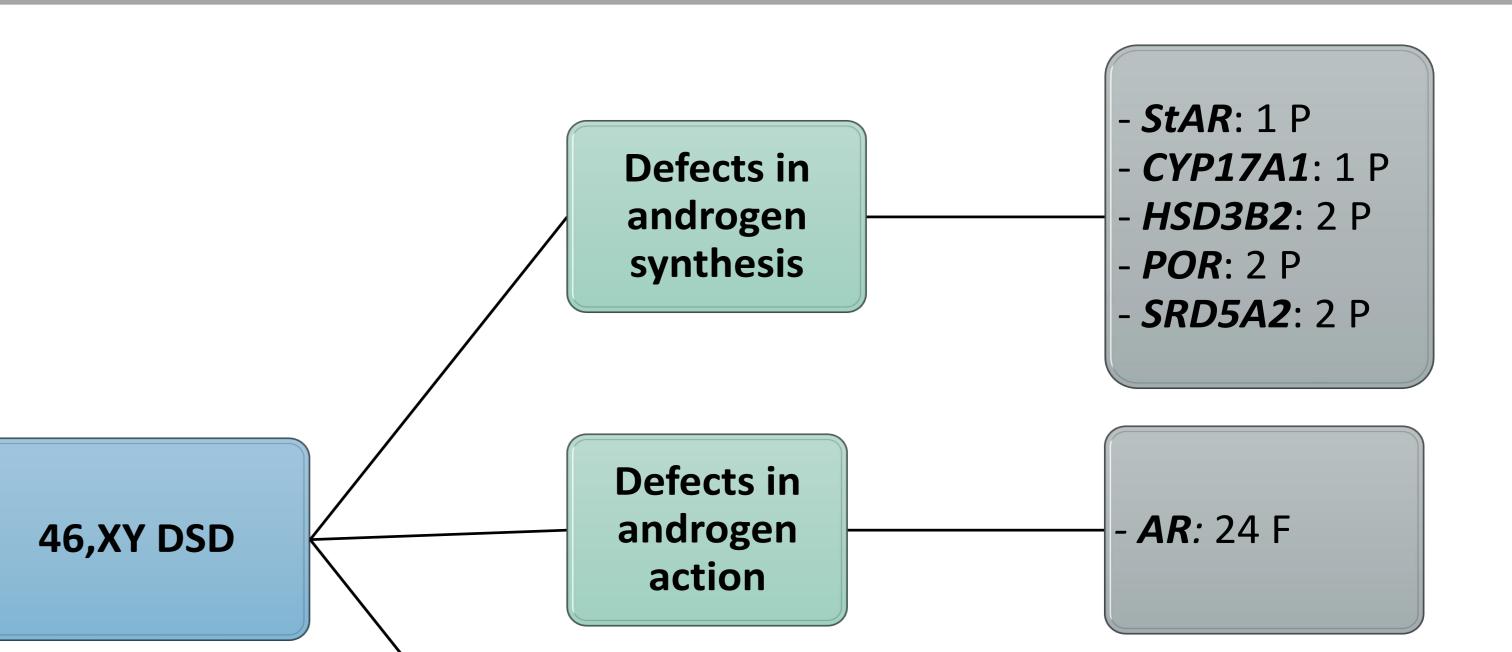
HSD3B2 p.[Val228Met];[Val228Met] p.[Arg249*];[Arg249*]

POR

p.[Ser331Cysfs*24];[Pro399 _Glu401dup] p.[Gly88Ser];[Gly88Ser]

SRD5A2


p.[Gly183Ser];[Gly196Asp] p.[Gln56Arg];[Gly183Ser])


p.Leu822Pro p.Arg832* p.Pro767Ser p.[Cys602=/Cys602Phe] p.[Glu804=/Glu804*] p.lle899Phe p.[His730=/His730Glnfs*38] p.Met750Val p.Arg608Gln p.Val890Met p.Asp691del p.Phe726Cys p.Arg856Cys p.Gln658Argfs*3 p.[Gln98=/Gln98Hisfs*8] c.1617_2763del p.Arg841Cys p.(Ser889=) p.Ala597Thr p.Asn611lle p.Glu707Asp

NR5A1^{3,4} p.Tyr183* p.Trp279* p.Gly77Glu p.Arg313His p.Arg69His p.Ser303Arg p.Arg241Trp WT1 p.Arg462Trp p.Tyr261*

IVS7+1G>T IVS9+4C>T p.Arg434His IVS9+5G>A IVS9+1G>A

Scribed in patients with isolated er

¹Baquedano MS. *et al.* Unique dominant negative mutation in the N-terminal mitochondrial targeting sequence of StAR, causing a variant form of congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 2013;98(1):E153-61. ²Touzon MS et al. Androgen Insensitivity Syndrome: Clinical Phenotype and Molecular Analysis in a Single Tertiary Center Cohort. J Clin Res Pediatr Endocrinol. 2019; 11(1): 24–33. ³Warman DM et al. Three New SF-1 (NR5A1) Gene Mutations in Two Unrelated Families with Multiple Affected Members: Within-Family Variability in 46,XY Subjects and Low Ovarian Reserve in Fertile 46,XX Subjects. Horm Res Paediatr 2011;75:70–77. ⁴Perez Garrido N et al. Functional Characterization of Two Mutations Located in the Ligand Binding Domain in the SF1. Int J Endocrinol Metab Disord 1(4). Underlined mutations have not been reported in the literature.

p.His886Tyr

Targeted	gene panel G3	Whole exome sequencing G3	
M2 al763Ile];[Glu30Gly] n889Glu r992Phe u564Ile	<i>NR5A1</i> p.Glu395del	<i>DHX37</i> p.Arg308Gln <i>NR5A1</i> p.Glu320fs	Disorders of gonad development

CONCLUSIONS

• In this cohort, excluding enzymatic defects, molecular characterization was reached in approximately 63% (50/79).

- Diagnosis in 46,XY DSD can be challenging due to overlapping clinical characteristics or poor genotype/phenotype correlation. Thus, candidate gene sequencing strategy might not be adequate in all cases.
- NGS can be a better approach to reach an etiologic diagnosis reducing time and medical interventions.
- Other etiologies should be considered: non coding genomic regions, oligo/multigenic inheritance, epigenetic pathways or environmental factors.

