# Methylation status of X inactivation-escape genes in controls and females with X chromosome rearrangements

Sayaka Kawashima<sup>1,2</sup>, Keiko Matsubara<sup>1</sup>, Machiko Toki<sup>3</sup>, Rika Kosaki<sup>4</sup>, Yukihiro Hasegawa<sup>5</sup>, Maki Fukami<sup>1</sup>, Masayo Kagami<sup>1</sup>

1 Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan

2 Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.

3 Department of Pediatrics, Hiratsuka City Hospital, Hiratsuka, Japan

4 Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan

5 Division of Endocrinology and Metabolism Tokyo Metropolitan Children's Medical Center, Tokyo, Japan

# Introduction and objective

- X chromosome inactivation (XCI) is a process in which one of the two X chromosomes in females is randomly inactivated in order to correct the imbalance of gene dosage between males and females. However, about 15% of genes on the inactivated X chromosome escape from XCI<sup>1</sup>.
- The mechanism of inactivation and escape remains to be revealed.
- The promoter regions of escape genes are hypomethylated compared to those of the inactivated genes<sup>2</sup>
- The objective of this study is to reveal the influence on the methylation status of escape genes' promoters in patients with X chromosome rearrangements.

| emales.                              | XX                       |                      |                      | XY                   |
|--------------------------------------|--------------------------|----------------------|----------------------|----------------------|
|                                      | Inactivated X chromosome |                      | Activated X          |                      |
| ated genes <sup>2)</sup> .           | inactivated<br>genes     | Escape genes         | chromosome           | X chromosome         |
| Expression                           | _                        | +                    | +                    | +                    |
| Methylation<br>status at<br>promoter | hyper -<br>methylation   | hypo-<br>methylation | hypo-<br>methylation | hypo-<br>methylation |

15

escape genes predicted

in our criteria

# Subjects Four patients (XX) with X chromosome rearrangements and 11 female and 12 male controls Patient 1 Patient 2 Patient 3 Patient 4

#### Methods

We performed the array-based methylation analysis with genomic DNA from leukocytes of the patients and controls using Infinium MethylationEPIC BeadChip.

#### **Extract escape genes**

We extracted the genes that have the hypomethylated promoter regions in both sexes.

- Within 1 kb up and downstream of transcription start sites
- Hypomethylation in both sexes (β levels < 0.15)</li>
- Methylation differences between males and females ( $\Delta|\beta|$ ) <0.1

When the above items are satisfied with 2 probes or more per a gene, the gene was regarded as an escape gene.

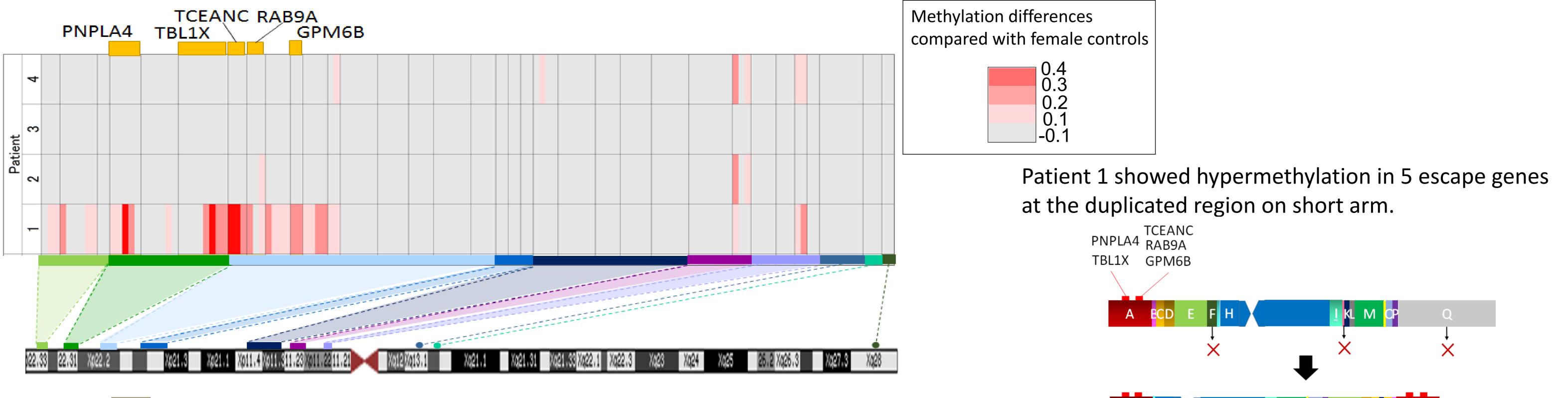
#### Methylation status in patients with X chromosome rearrangements

We evaluated 34 genes that were predicted to be escape genes by our criteria and also reported as escape genes in the previous report<sup>1</sup>.

We extracted escape genes in patients satisfying the following conditions :

• β levels > 0.25

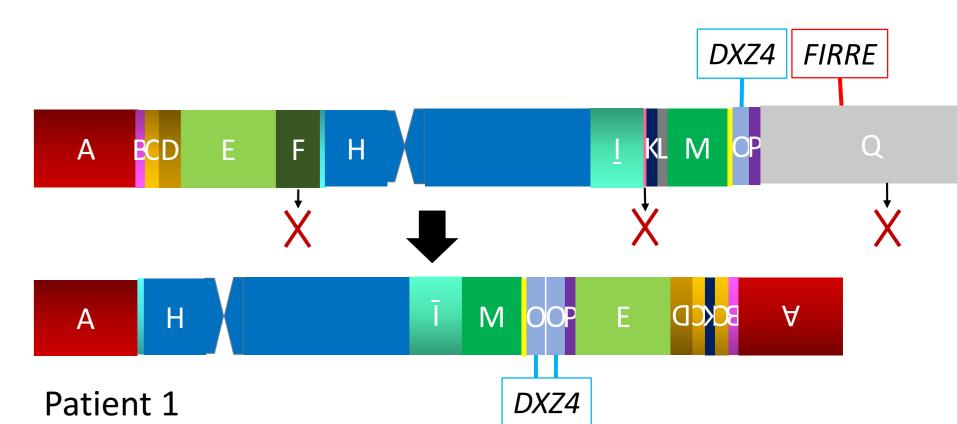
escape genes reported


34

- SD > 2.0 (compared with female controls)
- The above items are satisfied with 2 probes or more per a gene

28

#### Results


#### The methylation status of the promoters of the escape genes in the patients with X chromosome rearrangements



: The escape genes that showed methylation abnormalities in patient 1

## Discussion

- One patient showed the elevated methylation levels at the promoter regions of some escape genes.
- This finding suggests that structural abnormalities on X chromosome can affect the methylation levels of the promoter regions in some escape genes.
- This patient has a deletion or a duplication of the important loci to form 3D structure of inactivated X chromosome (*FIRRE* and *DXZ4* respectively). Recently, it was reported that deletion of *Firre* and *Dxz4* in mouse ES cells led to the change in gene expression of some escape genes.<sup>3)</sup> The methylation change in the patient may be caused by the deletion of FIRRE and/or the duplication of *DXZ4*.



### Conclusion

Specific X chromosome rearrangements is likely to affect the methylation status of promoter regions of some escape genes.

1) Carel. L, Willard. H. F Nature 2005;434 2) Cotton A et al. Hum Mol Genet 2015; 24 3) Froberg JE et al. Nat Commun. 2018;9



Sex differentiation, gonads and gynaecology or sex endocrinology

Sayaka Kawashima



