

Evaluation of molecular characteristics and steroid metabolomics in a large cohort P1-162 of children with 3^β-hydroxysteroid dehydrogenase 2 deficiency

Tulay Guran¹, Cengiz Kara², Melek Yildiz³, Eda C. Bitkin², Goncagul Haklar⁴, Jen-Chieh Lin⁵, Lorna C. Gilligan⁶, Lise Barnard⁷, Mehmet Keskin⁸, Ahmet Anik⁹, Gonul Catli¹⁰, Ayla Guven¹¹, Birgul Kirel¹², Filiz Tutunculer¹³, Hasan Onal³, Serap Turan¹, Teoman Akcay³, Zeynep Atay¹, Elizabeth S. Baranowski⁶, Gulay C. Yilmaz², Jamala Mamadova², Azad Akbarzade¹, Onder Sirikci⁴, AghaRza Aghayev¹⁴, Afra Alkan¹⁵, Cedric H.L. Shackleton⁶, Karl H. Storbeck⁷, Tugba Baris¹⁶, Wiebke Arlt^{6,17}, Bon-Chu Chung⁵, Abdullah Bereket¹.

1.Marmara University, School of Medicine, Department of Pediatric Endocrinology and Diabetes, Istanbul, Turkey; 3. Kanuni Sultan Suleyman Training and Research Hospital, Department of Pediatric Endocrinology and Diabetes, Istanbul, Turkey; 4. Marmara University, School of Medicine, Department of Biochemistry, Istanbul, Turkey; 5. Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; 6. Institute of Metabolism and Systems Research (IMSR), College of Medical & Dental Sciences, University of Birmingham, UK; 7.Stellenbosch University, Department of Pediatric Endocrinology and Diabetes, Gaziantep, Turkey; 9. Adnan Menderes University, School of Medicine, Department of Pediatric Endocrinology and Diabetes, Izmir, Turkey; 11. Health Science University, Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Izmir, Turkey; 11. Health Science University, Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Izmir, Turkey; 10. Katip Celebi Zeynep Kamil Women and Children Diseases Education and Research Hospital, Pediatric Endocrinology, Istanbul, Turkey; 12. Eskisehir, Turkey; 13. Department of Pediatrics, Division of Pediatric Endocrinology, Trakya University School of Medicine, Edirne, Turkey; 14. Istanbul Faculty of Medical Genetics, Istanbul, Turkey; 15. Yildirim Beyazit University, School of Medicine, Department of Medical Bioinformatics and Biostatistics, Bilkent, Ankara, Turkey; 16. Gelisim Genetik Tani Merkezi, Istanbul, Turkey; 17. Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Context: Deficiency of 3β-hydroxysteroid dehydrogenase 2 (3βHSD2) causes a very rare form of congenital adrenal hyperplasia (CAH) known as 3^βHSD2 deficiency, which is a consequence of biallelic HSD3B2 gene defects. The estimated prevalence is less than 1/1,000,000 live births. Knowledge of comprehensive steroid metabolome patterns in 3βHSD2 deficiency is scarce. **Objective:** We aimed to investigate phenotypical, molecular, and biochemical characteristics, as well as the genotype-phenotype relationship in patients with 3βHSD2 deficiency. We evaluated steroid hormone profiles in individuals with homozygous and heterozygous HSD3B2 gene defects, mutation-negative "functional 3^βHSD2 deficiency", and patients with 21-hydroxylase deficiency (21-OHD).

Setting: Multi-centre, cross-sectional study in nine tertiary pediatric endocrinology clinics in

ble 1. Sequence variations and	d genotype-phenotype	relationships in 31	children with 3βHSD2 deficiency	
•		•	• •	

											DL vs. (
Number of cases/families (n/n)	Genomic co-ordinates and nucleotide change (Genome assembly GRCh37.p13)	Protein (prediction)	cDNA position and nucleotide change (transcript NM_001166120, ENST00000543831)	PROVEAN	ariant Effect	PolyPhen2 (HumXar)	Mutation taster	Case report (DOI)	First functional characterization report (DOI)	Apparent activity in intact cells	Karyotype	Age(s) at diagnosis	Clinical type	Salt- wasting	DSD
1/1	g.4619_4620delCA chr1:119962172_119962173delC	p.H92Qfs*32	c.274_275delCA cDNA.523_524delCA	ND	ND	ND	Disease causing	Present study	Present study	ND	46, XX	Newborn	Classical	+	+
1/1	g.6891T>A chr1:119964444T>A	p.L107Q	c.320T>A cDNA.569T>A	-5.39	0.000	1	Disease causing	Present study	Present study	~12% of wild-type enzyme activity	46, XY	Newborn	Classical	+ (presentation and stress), normal potassium	+
2/1	g.7000_7001insAA chr1:119964553_119964554insA A	p.E144Kfs*31	c.429_430insAA cDNA.678_679insAA	ND	ND	ND	Disease causing	Present study	Present study	ND	46, XY (n=1) 46, XX (n=1)	Newborn-2 months	Classical	+	+ (46, XY) - (46, XX)
4/4	g.7223T>C chr1:119964776T>C	p.S218P	c.652T>C cDNA.901T>C	-1.93	0.101	0.117	Polymorphism	Present study	10.1111/cen.12394	<1-10% of wild-type enzyme activity [≇]	46, XY (n=3) 46, XX (n=1)	Newborn-7 months	Classical	+ (presentation and stress), normal potassium	+ (46, XY) - (46, XX)
2/1	g.7304G>C chr1:119964857G>C	p.A245P	c.733G>C cDNA.982G>C	-1.57	0.196	0.979	Polymorphism	Present study	10.1210/mend.7.5.8316254 [§] 10.1210/jcem.84.12.6288 [©]	~10% [§] and ~35% [©] of wild-type enzyme activity	46, XY (n=2)	~2 years	Classical	+ (presentation and stress), normal potassium	+
1/1	g.7482T>C chr1:119965035T>C	p.L304P	c.911T>C cDNA.1160T>C	-5.66	0.009	0.783	Disease causing	Present study	10.1007/s11033-019- 04809-4	ND	46, XY	Newborn	Classical	+	+
1/1	g.7505delC chr1:119965058delC	p.F314Sfs*54	c.934delC cDNA.1183delC	ND	ND	ND	Disease causing	Present study	Present study	ND	46, XY	Newborn	Classical	+	+
2/1	g.7530_7531insC chr1:119965083_119965084insC	p.L321Ifs*4	c. 959_960insC c.DNA.1208_1209ins C	ND	ND	ND	Disease causing	Present study	Present study	ND	46, XY (n=1) 46, XX (n=1)	Newborn	Classical	+	+ (46, XY) - (46, XX)
14/11	g.7538A>G chr1:119965091A>G	p.N323D	c.967A>G cDNA.1216A>G	-4.09	0.006	0.999	Disease causing	Present study	10.1007/s11033-019- 04809-4	<5% of wild-type enzyme activity	46, XY (n=7) 46, XX (n=7)	Newborn-8 months	Classical	+	+ (46, XY) - (46, XX)
2/1	g.7634T>C chr1:119965187T>C	p.W355R	c.1063T>C cDNA.1312T>C	-12.43	0.000	0.996	Disease causing	10.4274/jcrpe.3306	Present study	<5% of wild-type enzyme activity	46, XY (n=2)	Newborn	Classical	+	+
1/1	g.7647T>C chr1:119965200T>C	р.L.359Р	c.1076T>C cDNA.1325T>C	-3.12	0.004	0.913	Disease causing	Present study	Present study	<5% of wild-type enzyme activity	46, XX (n=1) 46, XY (n=1)	1-2 months	Classical	+	-

Turkey

Patients or Other Participants: Children with homozygous 3βHSD2 deficiency (n=31), individuals with heterozygous 3βHSD2 deficiency (n=31), children with classical 21-OHD (n=57), functional 3βHSD2 deficiency (n=18), and healthy controls (n=172).

Main Outcome Measures: A structured questionnaire was used to assess clinical and biochemical phenotype data. Genetic analysis of HSD3B2 was performed using Sanger sequencing. We measured Δ 5-to- Δ 4 steroids and 11-oxygenated C19 and rogens in serum and urine by mass spectrometry. Novel HSD3B2 mutations were studied in silico and by in vitro enzyme kinetic assays (Fig 1).

Results: Eleven homozygous (6 novel) in 31 children from 24 families (19 male/12 female; mean age: 6.6 ± 5.1 yrs) were identified (Fig 2A). The missense variants >5% of wild-type 3βHSD2 activity in vitro were associated with non-salt losing clinical phenotype (Table 1, Fig **2B)**. There was a significant genotype-phenotype-steroid metabolome correlation in patients with 3 β HSD2 deficiency (Fig 3). The plasma ratio of (17OH-Pregnenolone + Pregnenolone + DHEA)/(170HProgesterone + Progesterone + Androstenedione + Cortisol) was superior to (17OH-Pregnenolone/Cortisol) to discriminate 3βHSD2 deficiency from the other groups. Heterozygote carriers and functional 3 β HSD2 deficiency patients showed higher Δ 5-to- Δ 4 steroids than controls (Fig 4A, 4B, 5A). 11-oxygenated androgens were significantly lower in patients with 3βHSD2 deficiency (Fig 5B).

Figure 4. Assessment of two baseline Δ5-to-Δ4 steroid ratios in the diagnosis and differential diagnosis of 3βHSD2 deficiency. Two baseline plasma adrenal Δ5-to-Δ4 adrenal steroid ratios were compared between the individuals with 3BHSD2 deficiency, 3BHSD2 deficiency-like conditions, heterozygous 3BHSD2 deficiency, 21-OHD and non-CAH control groups. Grey areas show control groups stratified according to age. Both of these ratios were very efficient to diagnose and to differentiate 3BHSD2 deficiency from the other groups.

Figure 2. Molecular characteristics of HSD3B2 mutations. (A) Schematic presentation of HSD3B2 with all known mutations and novel mutations detected in this study. Non-coding exonic segments are indicated as white boxes. Most of the previously reported mutations are located in exon four. Pathogenic missense/nonsense mutations are shown in the upper panel, while insertion/deletions are indicated in the lower panel. Novel mutations reported in this study are shown in red. Mutations with *in vitro* >5% residual 3βHSD2 activity are highlighted in green boxes. (B) The activities of wildtype and mutant HSD3B2 enzymes. The graph shows the relative activities of wildtype and mutant HSD3B2 expressed in COS-1 cells following incubating with pregnenolone for 1 h. The Western blot on the top shows the levels of HSD3B2 in the cells, and the numbers on top

According to our results obtained from this large cohort,

Conclusions:

There is a good correlation between glucocorticoid and mineralocorticoid functions with in vitro and biochemical enzyme activity in 3βHSD2 deficiency, whereas genital and gonadal phenotype and behaviour are more complex and variable.

of the protein bands are the relative protein levels after quantitation of the images.

Figure 3. The effect of the severity of HSD3B2 mutation and karyotype on 3βHSD2 enzyme activity index. The effect of the severity of HSD3B2 mutation (A) and karyotype (B) on 3 β HSD2 enzyme activity index that is represented by simultaneously measured Δ 5 (pregnenolone, 17 α hydroxypregnenolone, DHEA) to $\Delta 4$ (progesterone, 17α -hydroxyprogesterone, and rostenedione and cortisol) steroids ratio. *HSD3B2* mutations causing a frameshift of gene sequence (p.H92Qfs*32, p.E144Kfs*31, p.F314Sfs*54, p.L321Ifs*4) result in a severely impaired 3βHSD2 enzyme activity index compared to missense mutations (p.L107Q, p.S218P, p.A245P, p.L304P, p.N323D, p.W355R, p.L359P). The difference of this ratio in patients with mild missense (p.L107Q, p.S218P, p.A245P; HSD3B2 activity ~5-10% of wild type) and severe missense (p.L304P, p.N323D, p.W355R and p.L359P; HSD3B2 activity <5% of wild type) mutations was not statistically significant (p=0.62) (A). 3βHSD2 enzyme activity index was similar in 7 girls and 7 boys with classical 3βHSD2 deficiency due to homozygous p.N323D mutation (p=0.62) (B).

In contrast to common knowledge, mineralocorticoid deficiency is not apparent in 1/3 of the cases.

- This 46, XY DSD is a "sine qua non" in affected males whereas ambiguous genitalia is only rarely seen in affected 46, XX individuals due to decreased production of potent androgens via classical or alternative pathways.
- On the other hand, premature pubarche is very common on either sex in 3βHSD2 deficiency.
- Spared mineralocorticoid function and unvirilized genitalia in females may lead to misdiagnosis and underestimation of the frequency of 3βHSD2 deficiency.
- Mass spectrometry-based measurements of $\Delta 5$ -to- $\Delta 4$ steroids are very sensitive and specific to diagnose and differentiate 3^βHSD2 deficiency from clinically look-alike conditions.
- Heterozygous 38HSD2 deficiency impairs biochemical 38HSD2 enzyme activity but does not cause a clinically significant phenotype.
- The term "non-classic or late-onset" form of 3BHSD2 deficiency, if it is existent, should only be used following genetic confirmation. The role of the regulators of 3BHSD2 in the pathogenesis of adrenal androgen excess needs to be elucidated.
- The correct diagnosis of 3BHSD2 deficiency is not only essential for the proper clinical management in infancy and childhood but also for the surveillance of gonadal functions and fertility of the patients in later life.

