Genotype-phenotype characteristics in four pedigrees of type II collagenopathy in our hospital

Kenichi Yamamoto¹⁾²⁾, Takuo Kubota¹⁾, Shinji Takeyari¹⁾, Yukako Nakano¹⁾, Hirofumi Nakayama¹⁾, Makoto Fujiwara¹⁾³⁾, Yasuhisa Ohata¹⁾, Taichi Kitaoka¹⁾, Yoko Miyoshi¹⁾, Keiichi Ozono¹⁾

1) Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan

2) Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan

3) The 1st. Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan

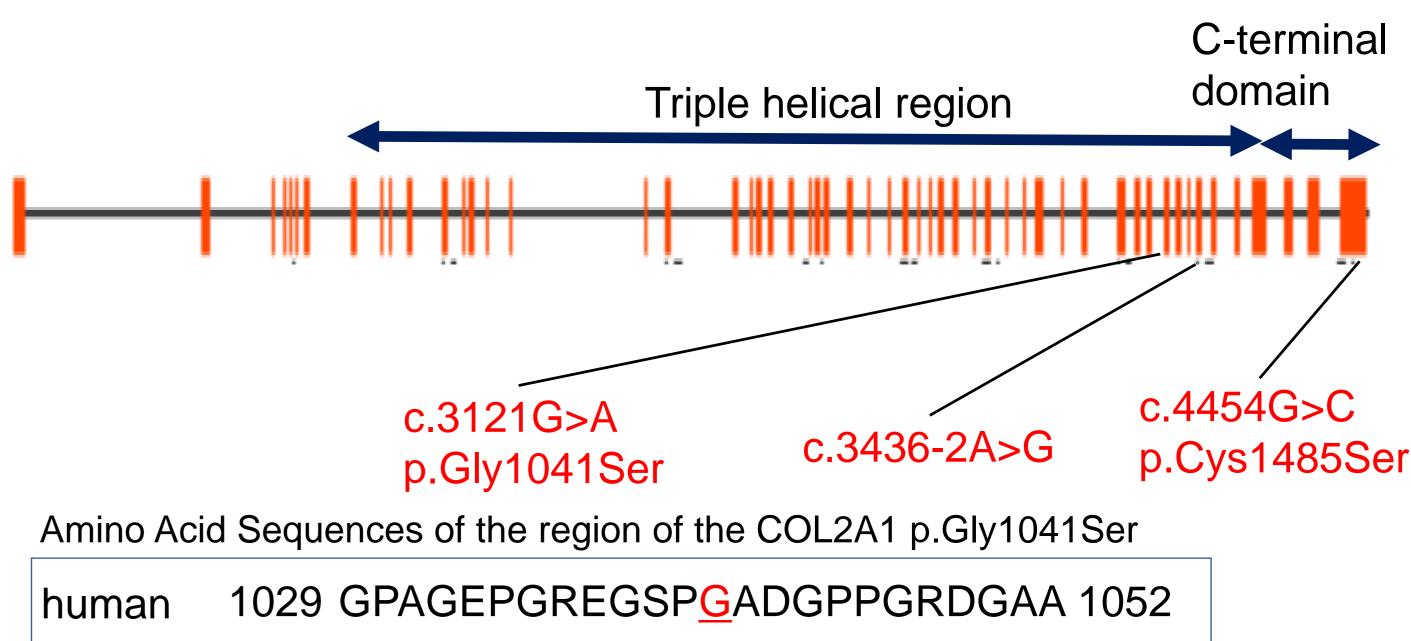
Conflict of interest: all authors declare no conflict of interest

Introduction

- Type II collagen is one of the essential elements for the cartilage, eye, and inner ear, and important in normal growth.
- Type II collagen is encoded by COL2A1 gene, and the mutations cause type II collagenopathy, which is characterized by the symptoms of skeletal dysplasia, ocular abnormities, and hearing impairment.
- Type II collagenopathy is a generic name of the skeletal dysplasia caused by pathogenic variants of COL2A1 and includes achondrogenesis type II, spondyloepiphyseal dysplasia, spondyloepimetaphyseal dysplasia, and stickler syndrome type1¹).
- Since this is a rare disease (1/10,000 in Stickler syndrome type1, which is the most frequent type II collagenopathy)¹⁾, genotype-phenotype

characteristics is still unknown.

Object


We describe the genotype-phenotype characteristics of type II collagenopathy about our patients.

Method

- We recruited four pedigrees clinically suspected of type II collagenopathy.
- We conducted whole exome sequencing and detected pathogenic variants by bioinformatic analysis.
- We discussed genotype-phenotype characteristics of our type II collagenopathy compared with previous reports.

Patient characteristics

Family		II	III	IV	
Proband	7 year-old girl	4 year-old boy	8 year-old boy	9 year-old boy	
Family history	Father Younger sister	None	Younger sister	Father?	
short statue with short trunk	yes	yes	yes	yes	
Short statue	-4.1SD Father: -3.4SD Little sister: -3.4SD	-5.0 SD	-8.5 SD	-2.5 SD	
Specific face	Round face Flat nose	Flat nose	Flat nose Small jaw	Hypertelorism Flat nose Small jaw	Di
Cleft palate	no	no	no	no	•
Ocular abnormity	no	no	no	Myopia	
Hearing impairment	no	no	no	no	
Other symptoms	no	GHD	Tracheo-laryngomalacia	Brachydactyly Autism GHD	
platyspondyly	yes	yes	Yes Ovoid vertebra	Yes Ovoid vertebra	•
Delayed ossification	no	yes	yes	yes	
Long bone	Enlargement of metaphysis	No abnormity	Slightly dumbbell shape	Splaying epiphysis	
Clinical diagnosis	SEMD SEDC	SEDC SEMD	Kniest dysplasia SEDC	SPD PLSDT	
COL2A1 variant	c.3436-2A>G	c.3121G>A p.Gly1041Ser	c.3121G>A p.Gly1041Ser	c.4454G>C p.Cys1485Ser	
Zygosity	heterozygous	heterozygous	heterozygous	heterozygous	

mouse 1029 GPAGEPGREGSPGADGPPGRDGAA 1052

Discussion

The c.3426-2A>G is a novel splice site mutation. Several splice site mutations were reported in Stickler syndrome type 1³. Although the height is considered to be relatively tall, our patient has severe short statue and SEMD Strudwick is suspected.

The c.3121G>A is a missense variant in glycine position of the Gly-X-Y repeat motifs. Glycine substitution of the Gly-X-Y cause a disruption of triple helical formation (dominant negative) and lead to severe phenotype³). The variant was reported in SEMD Strudwick type, but our patient, especially pedigree III has more severe phenotype and is suspected as knist dysplasia or SEDC clinically.

The c.4454G>C is a novel missense variants in C terminal region. The mutation in C terminal region was reported to be related with PLSDT and SPD⁴). Our patient has the symptoms fulfilled with SPD characteristics.

Allele frequency (gnomAD)	none	none	none	none
Functional prediction	Damaging (Human Splicing Finder)	Damaging (SIFT, PROVEAN)	Damaging (SIFT, PROVEAN)	Damaging (PolyPhen2, PROVEAN)
Reported	Not reported	Reported as SEMD Strudwick type ²⁾	Reported as SEMD Strudwick type ²⁾	Not reported

GHD: growth hormone deficiency, SEMD: spondyloepimetaphyseal dysplasia, SEDC: spondyloepiphyseal dysplasia congenital, SPD: spondyloperipheral dysplasia, PLSDT: platyspondylic dysplasia Torrance type

Conclusion

- Through the considerations of genotype-phenotype characteristics of our type II collagenopathy patients, we reassure the spectrum of the phenotype. Thus, the accumulation of the cases is required.
- Pedigree II and III have same pathogenic variant, but the severity is apparently different. The modifier variant may contribute, but we cannot detect it.

Reference

- 1) GeneReviews. https://www.ncbi.nlm.nih.gov/books/NBK540447/
- 2) Meredith (2007). Br J Opthalmol. 91, 1148
- 3) M Barat-Houari et al. (2016). Hum Mutat. 37, 7
- 4) A Zankl et al. (2005). Am J Med Genet. 133A, 61

