

Genotypic and Phenotypic Characterization of Turkish Patients with Vitamin D Dependent Rickets Type IA

Sare Betul Kaygusuz¹, Pınar Ata², Tarık Kirkgoz¹, Zehra Abali¹, Mehmet Eltan¹, Busra Tosun¹, Tuba Menevse¹, Didem Helvacioglu¹, Tulay Guran¹, Ahmet Arman² Abdullah Bereket¹, Serap Turan¹

> ¹Marmara University, Department of Pediatrics, Division of Pediatric Endocrinology, Istanbul, Turkey ²Marmara University, Department of Medical Genetics, Istanbul, Turkey

Background

Vitamin D Dependent Rickets Type IA (VDDR-IA)

- Most common type of VDDR
- Caused by mutations in CYP27B1
- **Aim:** Analyze the genotypic and phenotypic features of our VDDR-IA patients.

Methods

The patients with a clinical diagnosis of VDDR-IA were enrolled and analyzed for CYP27B1 gene mutations.

Results

- 12 (5 males) patients / 9 unrelated families
- Mean age of diagnosis : 3.48±4.00 (median: 1.1; min-max: 0.75-11.6) years
 nitially misdiagnosed as nutritional (n:7) or hypophosphatemic rickets (n:3)
 All had biochemical evidence suggestive of VDDR-IA

N individuals (n family)

- Except one with hypocalcemia and hyperphosphatemia
 - Normal *GNAS* gene sequencing and Gsα levels
 - VDDR-IA was subsequently considered upon bone pain and the radiological findings of rickets on initial presentation
- Six patients had a history of high dose vitamin D intake (300000-1500000 IU)
 - One had toxic level of 25[OH]D (250ng/ml)
- All mutations reported in our patients represent previously reported regional founders, which potentially facilitate genetic testing in VDRR-IA patients with same geographical origin
- Patients with p.Phe443Profs*24 mutation which leads to a truncated protein without enzymatic activity presented to the clinic at an earlier age than the patients with p.Lys192Glu mutation (1.12±0.31 vs 10.13±1.40 years).

Table 1: Clinical, laboratory, and genetic findings of patients at admission

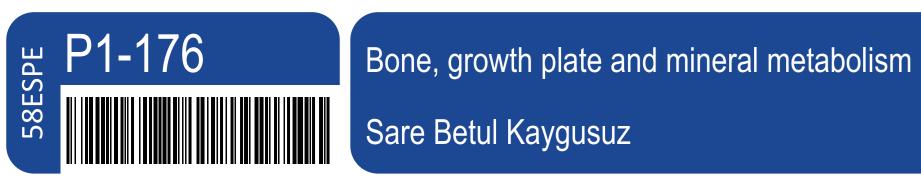
Intron 1 : c.195+2T>G / p.65Q fs	22(13) ^{1,2,3,4}
Exon 3 : c.574A>G / p.K192E	11(6) ³
Exon 4 : c.590G>A / p.197G>D	5(3) ³
Intron 7 : c.1215+2T>A/p.L380Afs*57	6(4) ^{2,4}
Exon 8 : c.1325_1326 insCCCACCC/p.F443Pfs*24	4 14(10) ^{1,3,4}

Figure 1: Common *CYP27B1* mutations in Turkish population

- 1. Durmaz, Erdem, et al. "Clinical and genetic analysis of patients with vitamin D-dependent rickets type 1 A." Clinical endocrinology 77.3 (2012): 363-369.
- Demir, Korcan, et al. "Novel CYP27B1 gene mutations in patients with vitamin D-dependent rickets type 1A." PLoS One 10.7 (2015): e0131376.
 Tahir, Sophia, et al. "Genotype and phenotype characteristics in 22 patients with vitamin D-dependent rickets type I." Hormone research in paediatrics 85.5 (2016): 309-317.
- Dursun, Fatma, et al. "Genetic and Clinical Characteristics of Patients with Vitamin D Dependent Rickets Type 1A." Journal of clinical research in pediatric endocrinology 11.1 (2019): 34.

		Presenting complaints	Sex	Λσο	Ca (mg/dL) (8.8-10.8)	P (mg/dL) (4.5-5.5)	ALP (IU/L) (150-500)	PTH (pg/ml) (15-65)	25OHD (ng/ml) (20-100)	1.25OHD (pg/mL) (16-65)	CYP271B Mutation/ Pedigree of Patients	
Ι	1	Delay in walking, hypocalcaemic seizure	F	1	5,10	3,80	1179,00	160,00	250	32	Exon 8 : c.1325_1326 insCCCACCC p.Phe443Profs*24 I \square IV **	
	2	Delay in walking	F	1	7,10	2,70	1352,00	873,00				
II	1*	Hypophosphatemic Rickets	Μ	8,6	9,60	3,90	219,00	121,00	30,5			
	2	History of VDDR sibling	F	0,9	6,40	2,70	1108,00	891,00	38,30	32,6		
III	1	Sweating, elevated serum ALP levels	Μ	1,1	8,40	2,90	1447,00	363,00	106.4	85,9		
IV	1	Delay in walking	Μ	1.75	7.9	2.3	9251	877.0	147.50	<8		
V	1	Bowed legs	F	10	8,60	2,30	2190,00	237,00	49,00	21	Exon 3: c.574 A>G. p.Lys192Glu VI	
	2	Bowed legs, gait abnormality	Μ	11,6	9,00	3,05	1048,00	203,40	61,18	58,24		
VI	1	Leg pain	F	8.8	6,40	6,20	710,00	362,40	33,80			
VI	[1	Hypocalcaemic seizure	F	1	4.8	2.4	858	482	24	47	Exon 3 cannot be amplified VII	
VII	I 1	Bowed legs	F	5,25	8,00	2,90	3585,00	1006,00	138.8		Exon 7: (polymorphism) c.1215 T>C. p.Asn405Asn Intron 7: c.1215+2 T>A. p.L380Afs*57 VIII	
IX	1	Delay in walking	Μ	1.2	8.4	2.2	3324	586	43.16	49.23	Exon 4: c.590G>A. p.Gly197Asp	

*Patient had been diagnosed previously with hypophosphatemic rickets at the age of 17 months at another clinic therefore were already on calcitriol and phosphorus replacement therapy. ** No consanguinity, parents originates from close villages


Table 2: Comparision of clinical and laboratory findings of two common mutation

	Exon 8 p.F443Pfs*24 (n = 13)	Exon 3 p.K192E (n = 8)	р
Age(yrs)	1.02 ± 0.14	5.15 ± 1.54	0.002*
Height (SDS)	-2.13 ± 0.56	-0.74 ± 0.30	55
Ca (mg/dL)	7.3 ± 0.4	7.4 ± 0.5	0.98
P (mg/dL)	$2.92{\pm}0.28$	3.16±0.48	0.65
ALP (IU/L)	2590±710	1504±224	0.25
PTH (pg/ml)	508±88	415±69	0.47
25OHD (ng/ml)	105±17.8	57±9.5	53
1.25OHD(pg/mL)	17.3±9.7	39.6±18.6	348
			Mean \pm SEM *p<0.005

Conclusions

Ó

- Our results indicate a good genotype-phenotype correlation in patients with VDDR-IA and
- The patients with p.F443Pfs*24 mutaitons presents earlier than patients with p.K192E mutations
- We emphasized the importance of correct diagnosis in VDDR-IA for the proper management, and avoiding poor clinical outcomes.

