

UNIMORE JNIVERSITÀ DEGLI STUDI D IODENA E REGGIO EMILI/

Endothelial and heart dysfunction in children and adolescents with type 1 diabetes.

ESPE 2019

P1-185 --**DIABETES AND** INSULIN 2

AUTHORS HAVE

B. PREDIERI ^{1,2}, F. LAMI ¹, V. CENCIARELLI ², S. CIANCIA ², B. RIGHI ², S.F. MADEO ¹, P. BRUZZI ¹, B. PRAMPOLINI¹, L. IUGHETTI^{1,2}

What?

¹ Department of Medical and Surgical Sciences of the Mother, Children and Adults; ² Post-Graduate School of Pediatrics -University of Modena and Reggio Emilia, Modena, Italy

INTRODUCTION AND OBJECTIVES

- Type I diabetes (TID) is an important risk factor for cardiovascular disease (CVD). Even if CVDs become mainly manifest in adulthood, the process of atherosclerosis starts in childhood
- Ultrasound is a reliable and noninvasive method for detecting early structural and functional atherosclerotic changes in the arterial wall and the heart

PATIENTS AND METHODS

Standard ultrasonic protocols^{1,2} were used for assessments of:

- common carotid artery intima-media thickness (cIMT)
- LV systolic and diastolic function indices
- Ultrasound evaluation was performed by the same investigator blinded to subjects' anthropometric (height, weight BMI, pubertal status, WC, SBP/DBP) and laboratory data (HbAIc,TC, LDL-C, HDL-C,TG)

Aim of this study was to determine early ultrasound signs of atherosclerosis and of left ventricular (LV) systolic and diastolic dysfunction in children and adolescents with TID.

Children and adolescents with TID

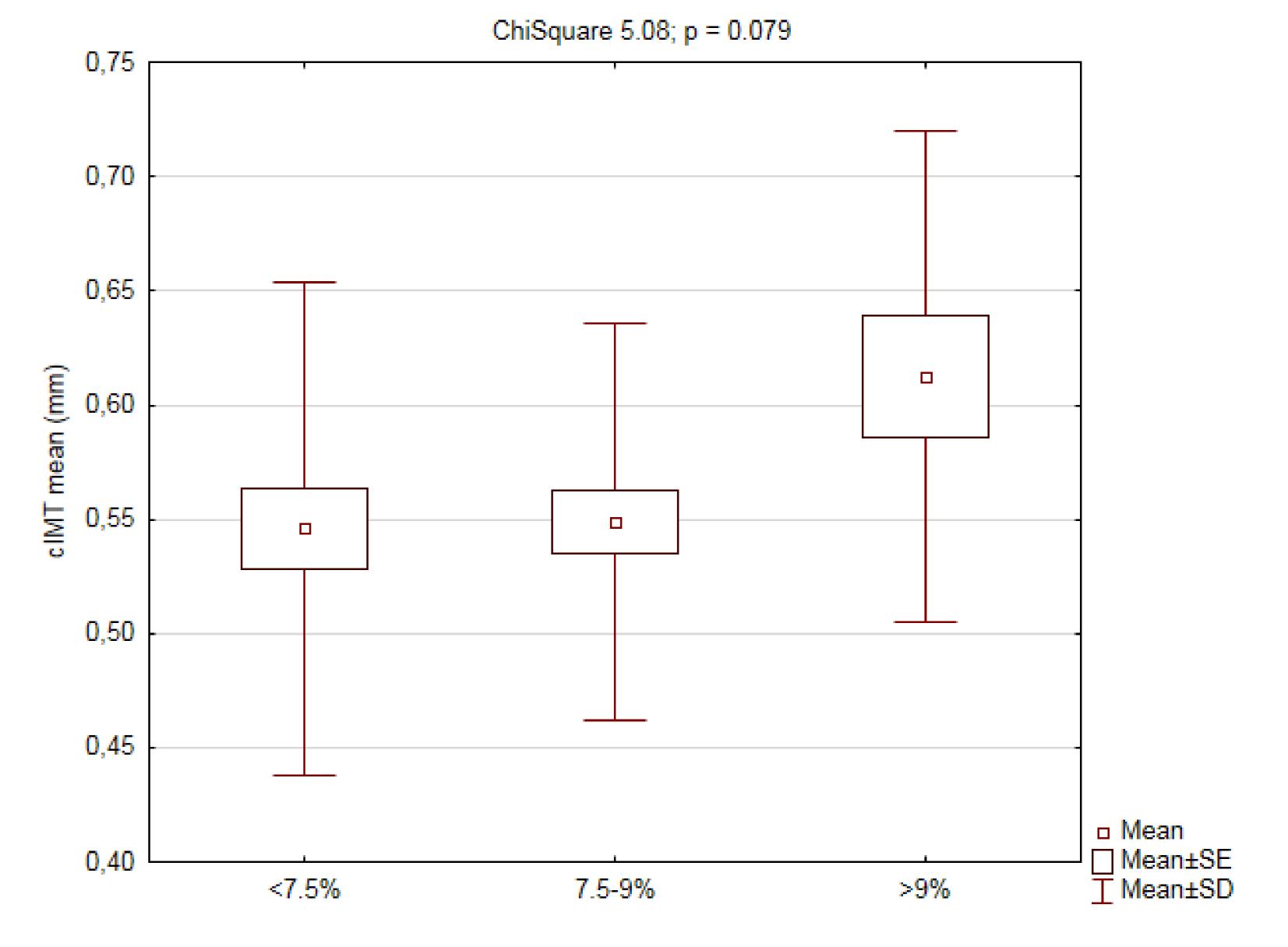
Inclusion criteria: age range ≥4 and <18 years, regular 3-months follow up visit Who? **Exclusion criteria**: other type of diabetes; the presence of chronic complications; documented heart diseases

Patients were consecutively enrolled during a routine visit When?

RESULTS

Study population \rightarrow 94 children and adolescents with TID (males 59.6%)

Table 1 – Clinical and metabolic characteristics of study population.


Age (yrs)	12.3±3.53 (12.4)	TID duration (yrs)	5.14±3.53 (4.03)
Height (SDS)	0.13±0.93 (0.04)	BMI (SDS)	0.09±0.87 (0)
WC (cm)	66.8±9.03 (65.5)	WC/Height ratio	0.44±0.04 (0.44)
SBP (mmHg)	114.8±15.5 (114)	DBP (mmHg)	64.47±9.17 (64.5)
Mean HbAIC last yr (%)	8.05±1.34 (7.95)	Mean HbAIC first 5 yrs (%)	7.88±1.09 (7.87)
TC (mg/dl)	165.9±30.7 (166)	LDL-C (mg/dl)	90.6±28.4 (87.0)
HDL- C (mg/dl)	63.1±12.5 (62.0)	TG (mg/dl)	62.9±31.0 (56.0)

- I. cIMT, LV systolic and diastolic function indices were all in the normal range defined for healthy population ^{2,3}
- **2.** According to mean HbAIc value in the last year, groups (≤7.5%; 7.5-9%; \geq 9%) were significantly different for
 - **DBP** Chi-Square=6.13; p=0.047
 - LV internal dimension at end-diastole (LVIDd) Chi-Square=7.25; p=0.027
 - A wave peak Chi-Square=6.11; p=0.047
 - isovolumetric relaxation time (IVRT) Chi-Square=7.29; p=0.026
- **Pubertal subjects vs pre-pubertal ones** had significantly higher values of 3.
 - cIMT 0.60±0.09 vs. 0.49±0.08 mm; p<0.001</p>
 - interventricular septal end-diastole (IVSd) 7.27±1.27 vs. 6.61±1.00 mm; p=0.027
 - deceleration time (DT) |38.3±3|.7 vs. ||2.6±20.9 ms; p<0.00|</p>
 - IVRT 60.8±14.1 vs. 53.1±9.58 ms; p=0.006
- cIMT mean was significantly correlated with (Spearman R) 4.

	R	Ρ
Age (years)	0.51	<0.001
WC (cm)	0.39	<0.001
SBP (mmHg)	0.41	<0.001
Mean HbAlc first 5 yrs (%)	0.24	0.021
TG (mg/dl)	0.23	0.028
TG/HDL-C R	0.22	0.033

The multivariate regression model was statistically significant for mean cIMT (R²=0.44, p<0.001) and identify TID duration (β = -0.23; p=0.024) and LDL-

cIMT (see Figure)

C levels (β =0.20, p=0.031) as predictor factors.

CONCLUSIONS

... cIMT was within the normal range, but it was higher in patients with a worse glycemic control ...

* In our study population, despite the good glycemic and lipid control, cIMT mean values were significantly higher respect to published ones in healthy ^{4,5} and TID ^{5,6} children and adolescents. Moreover, LV diastolic function was slightly abnormal

Ultrasound is useful for early detection of subjects with a greater cardiovascular risk who can benefit from targeted therapeutic interventions to prevent CVD

REFERENCES

I. Margeirsdottir HD, et al., Diabetes Care 2010 2. Wilkenshoff UM, et al. - J Am Soc Echocardiogr 2001 3. Stein JH, et al., J Am Soc Echocardiogr 2008 4. Brunvand L, et al., BMC Cardiovasc Disord 2016

5. Ciftel M et al., Diab Vasc Dis Res 2014 6. Eltayed AA, et al., Pediatr Cardiol 2014

