

Evaluation of Thyroid Function Tests in Children with Chronic Liver Diseases

Ş.Şebnem ÖN¹, Sezer ACAR², Korcan DEMİR², Ayhan ABACI², Yeşim ÖZTÜRK³, Sinem Kahveci ÇELİK³, Ece BÖBER², Pediatry¹ Pediatric Endocrinology², Pediatric Gastroenterology³ Dokuz Eylül University, Turkey

Free T4 Free T3

Introduction: Thyroid hormone metabolism may be impaired in chronic liver diseases and subclinical hypothyroidism or euthyroid sick syndrome may occur. Thyroid dysfunction has

been shown in 5% to 20% of patients with primary biliary cirrhosis and chronic active hepatitis.

Backgrounds /Aims: Studies related to changes in thyroid hormone metabolism in the

course of chronic liver diseases have been conducted mostly in adults. In this study, we

aimed to investigate the thyroid dysfunction in childhood chronic liver diseases.

Results

- \checkmark Of the 107 patients, 96 (89.7%) had normal thyroid function test and 7 (6.5%) had subclinical hypothyroidism and four (3.7%) had euthyroid sick syndrome.
- Of the 7 patients with subclinical hypothyroidism, one (14.2%) had glycogen \checkmark

Methods: Between 2005 and 2018, 960 chronic liver disease patient file that followed in

our gastroenterology department are reviewed. Among all study subjects, 107 (53 female,

54 male) patients aged between 1 month and 18 age who were diagnosed as chronic liver

disease and had thyroid function tests during diagnosis in their file, were enrolled in the

study group. Anthropometric characteristics, laboratory data (ALT, AST, ALP GGT, total

bilirubin, direct bilirubin, indirect bilirubin, albumin, total protein), and thyroid function

test values were obtained from patient files..

storage diasease, one (14.2%) had biliary atresia, one (14.2%) had undiagnosed cholestatic liver disease, one (14.2%) had Alagille syndrome, one (14.2%) had idiopatic hepatitis, one (14.2%) had progressive familial intrahepatic cholestasis (PFIC) and one (14.2%) had congenital hepatic fibrosis . (Table 1)

 \checkmark Spearman correlation analysis showed a negative correlation between free T3 and direct bilirubin (r = -0,329, p = 0,027). (Table 2)

Discussion

 \checkmark JAG1 gene defect may be responsible hypothyroidism in Alagille syndrome.

 \checkmark In experimental studies have shown that the synthesis and release of T4 and T3 are adversely affected by elevated proinflammatory cytokine concentrations. Thyroid dysfunction may be associated with increased cytokine concentrations in cirrhosis.

 \checkmark Growth retardation mostly seen in patients with glycogen storage diseases may be result of subclinical hypothyroidism.

Age	Diagnosis	Thyroid disorders	TSH	Free T4	Free T3	
2 months	Biliary atresia	SCH*	22.80	1.13	1.67	
17 years	PFIC	SCH	4.55	1.10	1.99	
1 year	Cholestatic liver disease	SCH	7.70	1.04	3,95	
13 years	Congenital hepatic fibrosis	SCH	5.03	1.11	3.12	
1 year	Idiopatic hepatitis	SCH	6.40	1.10	3,65	
1.5 years	Glycogen storage disease	SCH	11.87	0.93	3,56	
2 months	Alagille syndrome	SCH	18.80	0.96	3,21	
10 years	Congenital hepatic fibrosis	ESS**	0.19	0.79	1.78	
1.5 months	Cholestatic liver disease	ESS	0.17	0.94	1.17	
8 years	Cryptogenic cirrhosis	ESS	0.23	0.85	1.20	
1.5 months	Cholestatic liver disease	ESS	0.09	1.13	0.90	

*SCH: subclinical hypothyroidism, **ESS: euthyroid sick syndrome

		TSH	free T3	free T4
AST	r *	-0.093	0.012	-0.053
	p	0.340	0.936	0.586
ALT	r *	-0.081	0.083	-0.078
	p	0.406	0.590	0.423
GGT	r*	0.115	0.088	0.016
	p	0.239	0.565	0.869
ALP	r*	-0.023	-0.46	0.105
	p	0.811	0.765	0.280
Total Bilirubin	r*	-0.017	-0.159	0.040
	p	0.858	0.297	0.684
Direct Bilirubin	r*	-0.102	-0.329	0.051
	p	0.298	0.027	0.601
Indirect Bilirubin	r*	0.070	0.043	0.012
	p	0.476	0.779	0.902
Total protein	r*	-0.098	0.188	-0.273
	р	0.319	0.221	0.005

Conclusion

- Euthyroid sick syndrome or subclinical hypothyroidism can be seen frequently in children with chronic liver diseases.
- Thyroid function tests should be evaluated in these cases at the diagnosis and monitoring.
- This study is the first to show a negative correlation between free T3 levels and direct bilirubin, suggesting the association between the disease severity and the thyroid function test.

References:

*Melis D, Pivonello R, Parenti G, Della Casa R, Salerno M, Lombardi G, Sebastio G, Colao A, Andria G. Increased prevalence of thyroid autoimmunity and hypothyroidism in patients with glycogen storage disease type I. J Pediatr. 2007;150(3):300-5, 305

