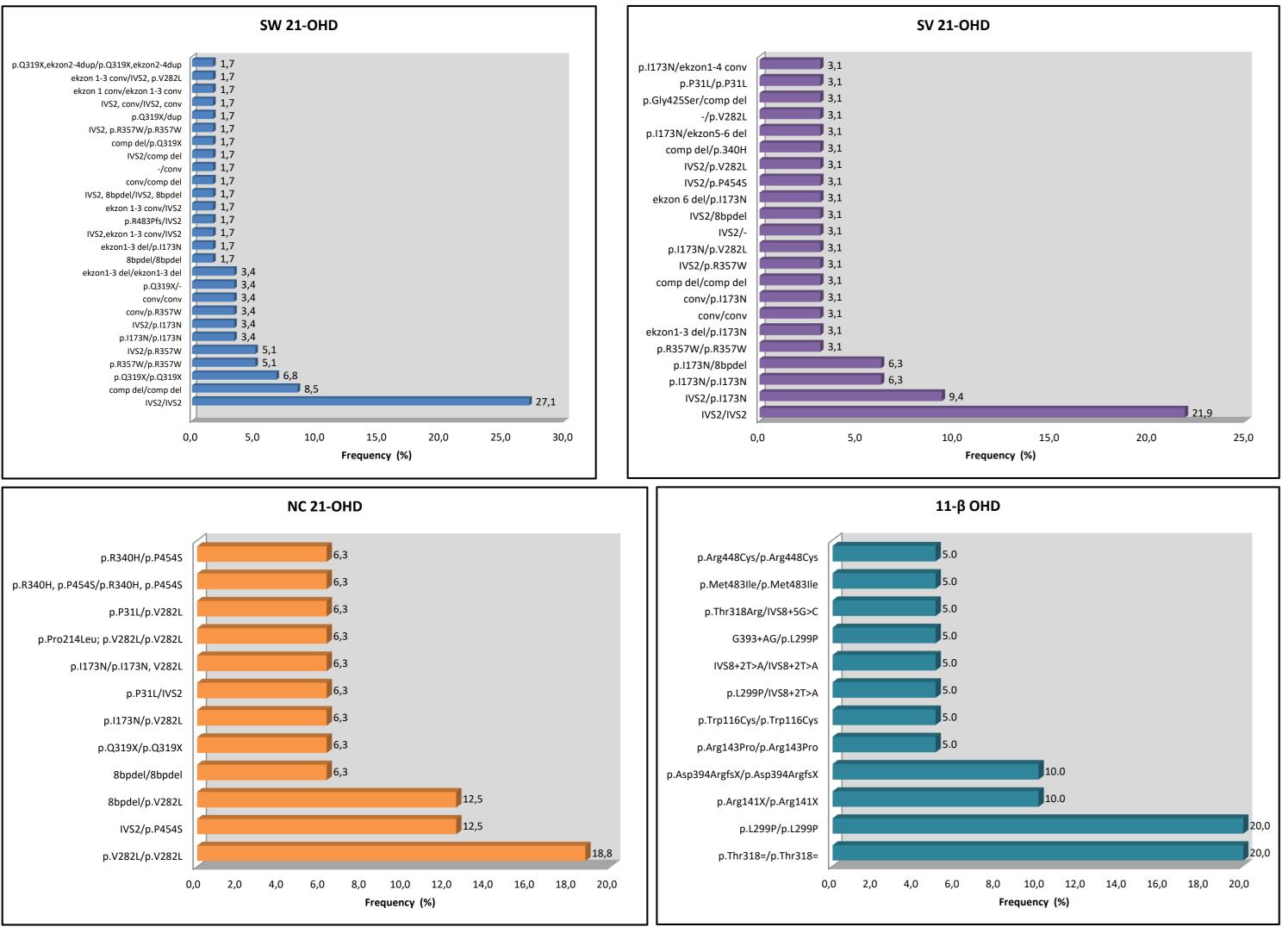


GENOTYPE-PHENOTYPE CORRELATION AND CLINICAL FINDINGS IN 145 PATIENTS WITH CONGENITAL ADRENAL HYPERPLASIA: SINGLE CENTRE EXPERIENCE

Gizem Cilsaat¹, Guven Toksoy², Umut Altınoglu2, Firdevs Bas¹, Birsen Karaman², Şükran Poyrazoglu¹, Oya Uyguner², Seher Basaran², **Feyza Darendeliler**¹

> Istanbul University, Istanbul Faculty of Medicine, ¹Department of Pediatrics, Pediatric Endocrinology Unit Istanbul University, Istanbul Faculty of Medicine, ² Department of Medical Genetics

Disclosure : The authors have nothing to disclose.


Background: Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders of adrenal steroidogenesis. CAH has 6 subgroups based on the affected enzyme. CAH due to 21-hydroxylase deficiency (21-OHD) accounts for 90-95% of the cases and is followed by 11β -hydroxylase deficiency(11β -OHD) with a frequency between 0.2-8%. In a recent study, the frequency of classic 21-OHD in Turkish population is found out to be 1:7787 and the frequency of 11β -OHD 1:38935.

Aim: The purpose of this study was to investigate genotype-phenotype correlation, clinical findings and long-term outcomes in patients with CAH due to11β-OHD and 21-OHD.

Subjects and Methods: The clinical records of 250 patients, followed in our clinic due to classic 21-OHD, non-classic 21-OHD and 11β-OHD were analyzed retrospectively. 145 genetically proven 21-OHD and 11β -OHD patients were included in this study. Endocrinological, clinical and molecular findings were recorded at presentation and follow-up. SPSS version 23 (Chicago, IL, USA) was used for statistical analyses. **Results:** Some clinical findings of the patients are summarized in **Table 1**. Out of 145 patients diagnosed with CAH,122 had (83.6%) 210HD, 66 salt wasting (SW),40 simple virilizing (SV),16 non-classic (NC); 23 (16.4 %) had 11β-OHD. SW 21-OHD was the most common and the earliest diagnosed CAH type. Consanguinity rate was high in all groups(47%, 45%, 25% and 69.6%, respectively). Due to severe virilization and late diagnosis, some of the XX patients were raised as male 3 (7%) in SW, 6 (21.4%) in SV, and 3 (25%) in 11-βOHD. Frequency of SGA was higher in SV and NC 21-OHD (p=0.048). While 29 different mutations were detected in 21 OHD, there were 12 different mutations in 11β-OHD. The most common mutation was IVS-2 not only in the all patients with 21-OHD, but also in the SW (34.7%) and SV(34.4%). Furthermore, the most common mutation in NC 21-OHD was p.V282L(34.4%) and p.Leu299Pro(25%) in 11-βOHD (Figure 1). Positive predictive value(PPV) for all 21-OHD patients was 78.4%. PPV in subgroups(according to enzyme activity) was 80.8% in group0 ('Null'=Enzyme activity:0%), 100% in groupA (1%), 62.5% in group B (1-2%), and 65.2% in group C (20-50%). There was no genotype-phenotype correlation in patients with 11- β OHD. 53.3% of patients in 21-OHD and 69.6% in 11-βOHD had reached the adult height. Mean value of the difference between the adult height and the target height for those, who have reached adult height SDS was -0.42±0.73 in SW; -0.91±1.35 in SV, - 0,14±0,94 in NC, and -0,71±1,43 in 11-βOHD. The pubertal spurt was not sufficient in classic 21-OHD (Figure 2,3,4). In logistic regression, the most important factor on short stature was height SDS at onset of puberty (p=0.018, B=3.058). The rate of early puberty was 24.2 % in SW, 40% in SV, 18.8% in NC 21-OHD and 56.5% in 11-βOHD(p=0.003 in all groups). Frequency of testicular adrenal rest tumour (TART) was 29.4% for SW, 33.3% for SV and 40% for 11-βOHD (Figure 5). While the obesity rate in all subgroups of 21-OHD(32.8% in SW,33.3% in SV, 31.2% in NC) was significantly high, it was low in the 11-βOHD (5%) (p=0.010).

Table 1. Clinical and laboratory findings of patients at presentation

		Group1	Group 2	Group 3	Group 4
Age at diagnosis	Mean±SD	(Salt Wasting) 0.44±1.65	(Simple Virilizing) 3.35±2.98	(Non classic) 8.97±3.97	(11 BOHD) 2.43±2.65
(month)	Median (Range)	0.06 (0-5.80)	3.18 (0-10.5)	7.6 (3.09-16.9)	1.8 (0.02-11.2)
Gender; n (%)	Male	26 (39.4)	18 (45.0)	3 (188)	14 (60.9)
	Female				
		40 (60.6)	22 (55.0)	13 (81.2)	9 (39.1)
Genotype; n (%)	XX	23 (34.8)	12 (30)	3 (18.8)	11 (47.8)
	XY	43 (65.2)	28 (70)	13 (81.3)	12 (52.2)
Birthweight SDS (n=132)	Mean±SD	0.26±1.08	-0.27±1.39	-0.28±1.54	-0.22±1.02
	Median (Range)	0.1 (-2.4-3.1)	-0.3 (-3.2-1.9)	-0.04 (-3.7-1.7)	0.05 (-2.7-1.6)
	AGA	51 (82.3)	23 (63.9)	8 (57.2)	16 (80.0)
	SGA	3 (4.8)	9 (25.0)	3 (21.4)	3 (15.0)
	LGA	8 (12.9)	4 (11.1)	3 (21.4)	1 (5.0)
Weight SDS	<i>Mean</i> ±SD	-0.98±1.36	0.41±1.42	0.54±2.16	1.43±2.18
	Median (Range)	-1.2 (-4.2-2.3)	0.4 (-3.4-2.8)	0.4 (-3.7-6.1)	2 (-3.3-4.2)
Height SDS	<i>Mean</i> ±SD	-0.32±1.52	0.71±2.03	-0.02±1.38	1.77±2.40
	Median (Range)	-0.5 (-3.3-4.1)	0.5 (-3.9-5.3)	-0.06 (-2.3-3.3)	1.5 (-5.1-6.2)
BMISDS	<i>Mean</i> ±SD	-1.20±1.57	-0.07±1.31	0.50±1.83	0.62±1.65
	Median (Range)	-1.2 (-6.1-2.5)	-0.1 (-4.8-2.9)	0.7 (-2.9-4.2)	0.7 (-3.4-3.2)
	Low Weight	20 (30.8)	3 (7.5)	3 (18.8)	2 (8.7)
	Normal	35 (53.8)	30 (75)	7 (43,8)	11 (47.8)
	Overweight	3 (4.6)	3 (7.5)	2 (12,5)	5 (21.7)
	Obese	3 (4.6)	4 (10)	4 (25)	5 (21.7)
Prader stage <i>; n (%)</i> (n=96)	Stage I	0 (0)	2 (7.1)	13 (100)	0 (0)
	Stage II-III	17 (39.5)	10 (35.7)	0 (0)	6 (50)
	Stage IV-V	25 (58.1)	14 (50)	0 (0)	6 (50)
	Operated	1 (2.3)	2 (7.1)	0 (0)	0 (0)
Bone Age / Chrononlogical age	Mean±SD	1.52±0.88	1.84±0.51	1.25±0.20	2.41±0.67
	Median (Range)	1.2 (0.7-3.4)	1.8 (1.1-3.4)	1.3 (0.8-1.6)	2.3 (1.6-3.7)
	n	10	26	11	9

			20		U C
Consanguinity; n (%)		31 (47.0)	18 (45.0)	4 (25.0)	16 (69.6)
Target height SDS	<i>Mean</i> ±SD	-0.78±0.77	-1.06±0.74	-1.29±0.70	-0.95±0.90
	Median (Range)	-0.8 (-2.9-1.1)	-1 (-2.8-0.3)	-1.4 (-2.3-0)	-1 (-2.7-0.7)
	n	62	37	14	21

BMI: body mass index, SDS: standard deviation score, TART: Testicular Adrenal Rest Tumour

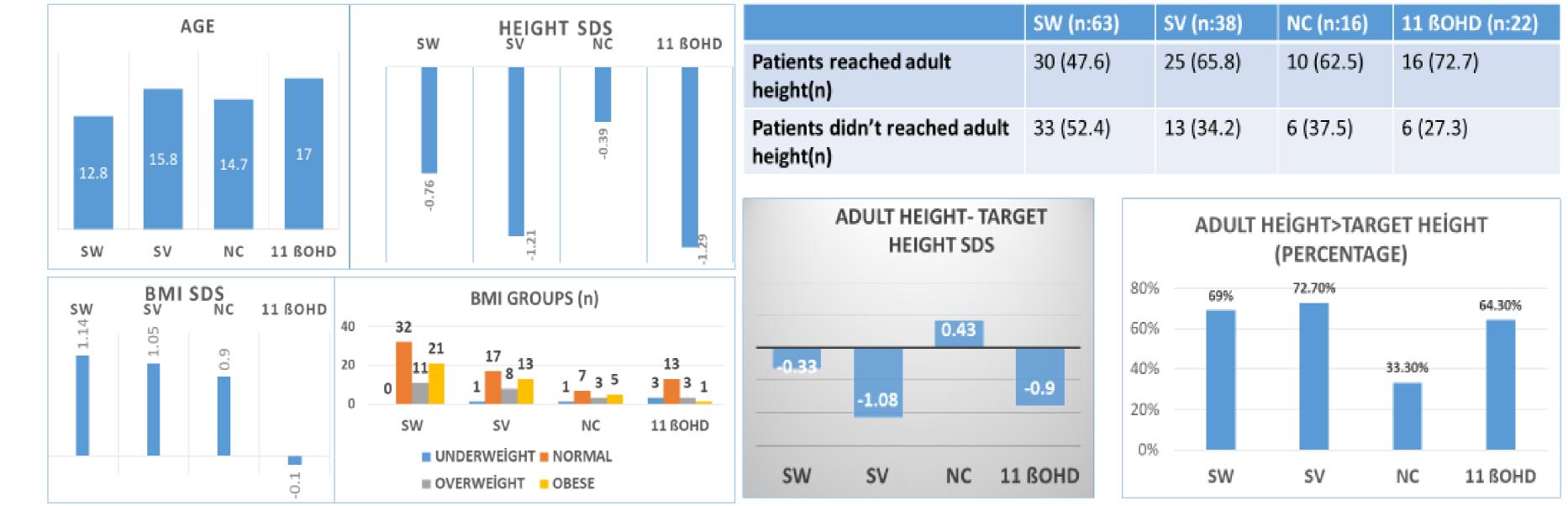


Figure 2. Anthropometric measurements of the patients at last evaluation

Figure 3. Growth of the patients with CAH

Figure 1. Molecular findings in the patients with CAH

ADULT HEIGHT SDS-HEIGHT

NC

AGE AT ONSET OF PUBERTY (median)

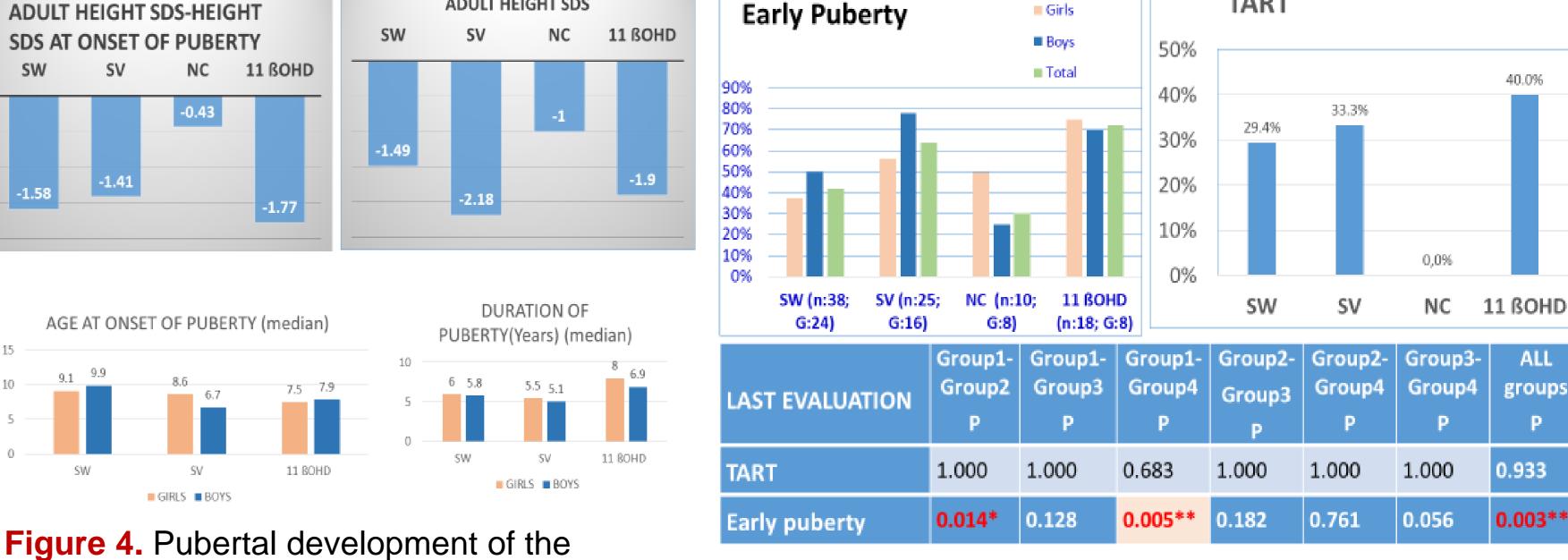
GIRLS BOYS

patients with CAH

11 BOHD

11 BOHD

SDS AT ONSET OF PUBERTY


ADULT HEIGHT SDS

Girls

TART

Conclusion

- □ In Turkey, where there is a high rate of consanguinty, the frequency of 11- β OHD is also high.
- \Box The rate of mutation diversity for both 21-OHD and 11- β OHD was very high.
- The positive predictive value of genotype-phenotype correlation in 21-OHD was good.
- The pubertal spurt was not sufficient in classical 21-OHD.
- While the rate of obesity development was high in 21-OHD, the prevalence of TART and early puberty were higher in $11-\beta$ OHD.
- Detection of the frequency of mutations may be important for early diagnosis, prenatal diagnosis and treatment, and establishing a screening strategy.

Figure 5. Early Puberty and TART in the patients with CAH

References

- 1. White PC, Speiser PW. Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency 1. Endocr Rev 2000;21:245–291.
- 2. Bulsari K, Falhammar H. Clinical perspectives in congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Endocrine 2017;55:19–36
- 3. Güran T, Tezel B, Gürbüz F, Eklioğlu BS, Hatipoğlu N, Kara C, at al. Neonatal Screening for Congenital Adrenal Hyperplasia in Turkey: A Pilot Study with 38,935 Infants. J Clin Res Pediatr Endocrinol 2018;doi:10.4274/jcrpe.0117
- 4. Muthusamy K, Elamin MB, Smushkin G, Murad MH, Lampropulos JF, Elamin KB, at al. Clinical review: Adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J Clin Endocrinol Metab 2010;95:4161-72.

Poster presented at:

