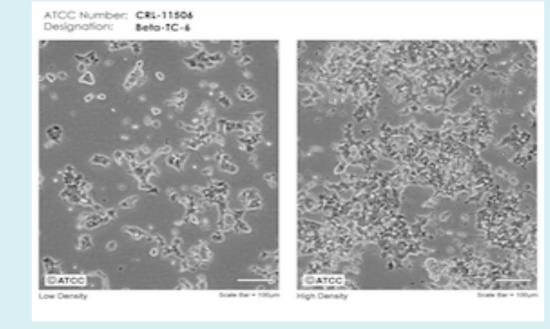
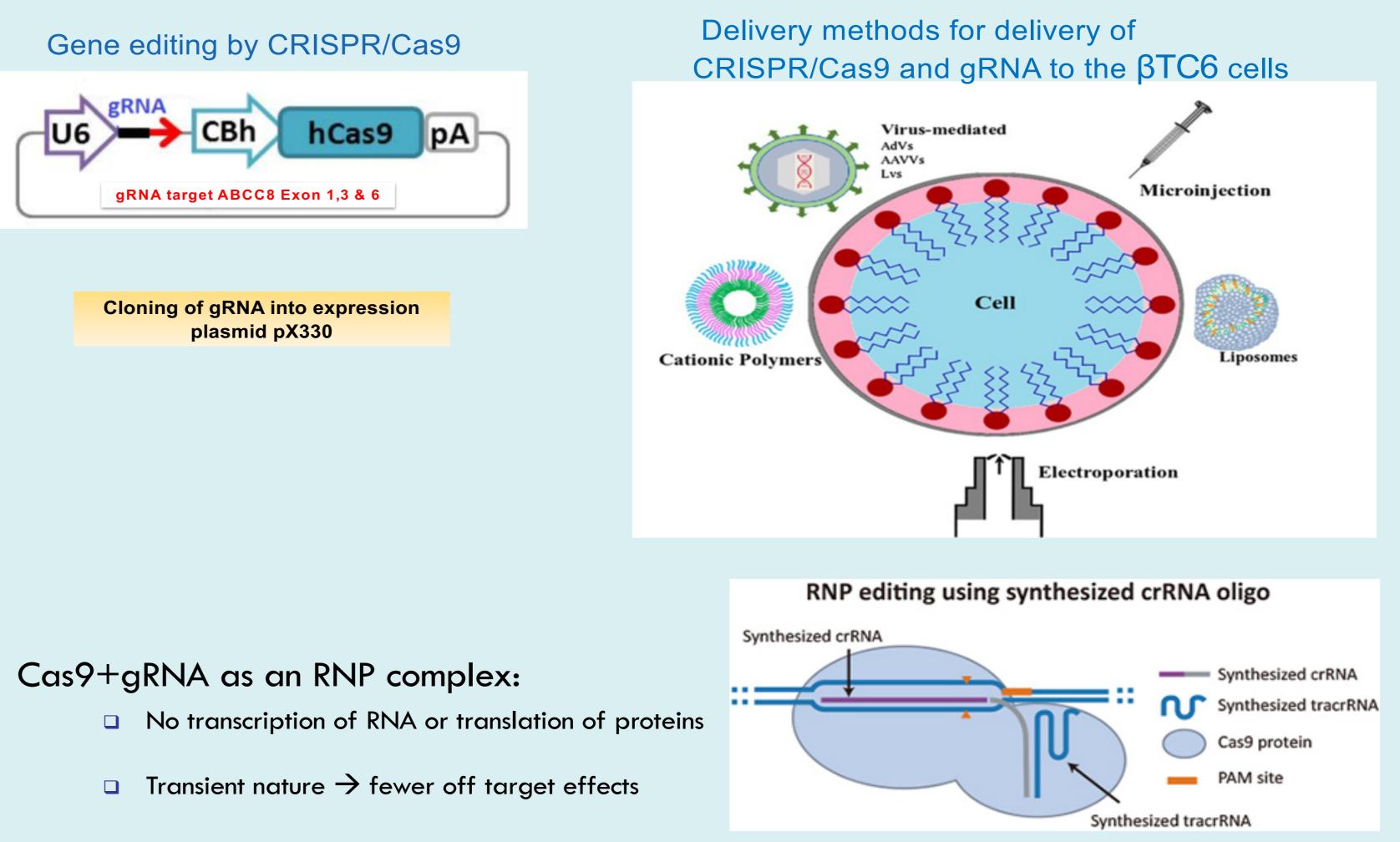
Optimisation of transfection methods using DNA and Protein formats for CRISPR Cas9 mediated gene knock out in Beta-TC-6 cells.

Preetha Purushothaman¹, Amy Walker¹, Khalid Hussain², Stephen Hart¹ ¹Institute of Child Health, University College London, London, United Kingdom. ²Sidra Medical and Research Center, Doha, Qatar.

INTRODUCTION


Beta-tumour cells (β TC) are a group of highly differentiated beta cell lines derived by expression of the SV40 T antigen (Tag) oncoprotein under control of the insulin promoter in transgenic mice.

βTC-6 cells exhibit glucose stimulated insulin secretion which makes them a valuable tool in understanding the mechanisms that regulate insulin secretion.


CRISPR/Cas9

Recently emerged as a powerful and highly efficient genome engineering tool.

Provides new approaches for generating in vitro disease models presenting an opportunity to study rare genetic diseases ^{2, 3}

MATERIALS AND METHODS

The success of CRISPR genome editing experiments is limited by the intracellular delivery and expression of Cas9 protein and gRNA.

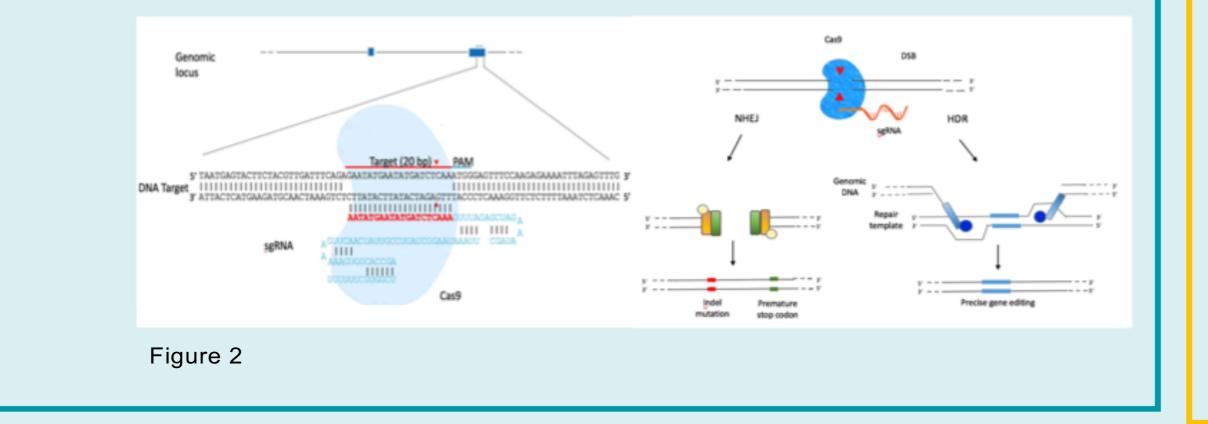
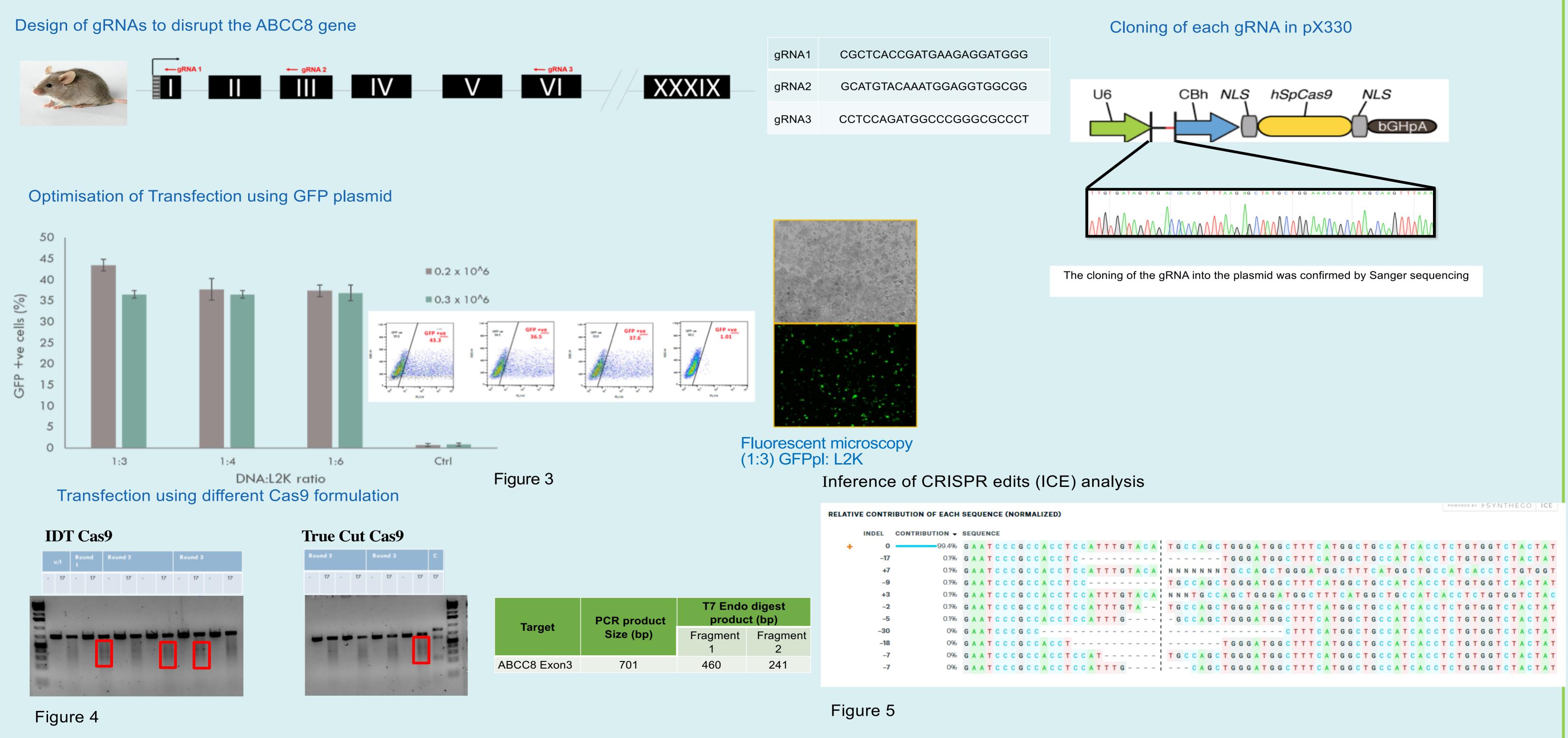



Figure 1

RESULTS

0	99.4%	G	A A	т	cc	c	G	сс	A	С	СТ	сc	A	т	тτ	G	т	A C	A	т	G	с	A	G	ст	G	G	G A	т	G G	С	тт	т	c /	Т	G	G C	т	G C	c /	A T	С	A C	с	т	СТ	G	T G	G	т	т	A	ст	A	т
-17	0.1%	G /	A A	т	co	c c	G	c c	A	С	СТ	с -	-	-			-		-	-	-			-	- T	G	G	G A	т	GG	С	тт	т	c /	۲	G	G C	т	G C	c /	A T	С	A (c	т	СТ	G	Т	G	т	ст	A	ст	A	т
+7	0.1%	G	A A	т	C C	c	G	c c	A	С	СТ	СС	A	T.	тτ	G	т	A C	A	N	Ν	NN	N	Ν	N T	G	C	C A	G	СТ	G	GG	A	т	G	C	гт	т	C A	т	GG	C	Т	C	C	A T	С	A C	с	т	т	G	ΤG	G	т
-9	0.1%	G /	A A	т	co	c	G	c c	A	С	СТ	СС	- 1	-			-		-	т	G	c	A	G	СТ	G	G	G A	т	GG	С	ТΤ	гт	C /	۲	G	G C	т	G C	C /	A T	С	A C	c	т	СТ	G	T G	G	т	ст	A	ст	Α 1	т
+3	0.1%	G /	A A	т	co	c	G	c c	A	С	СТ	СС	A	т	тτ	G	т	A C	A	N	Ν	N T	G	С	CA	G	c	T G	G	G A	т	GG	C C	ΤI	Т	С	A T	G	G C	т	G C	С	A 1	C	A	сс	т	СТ	G	т	G	т	ст	A	С
-2	0.1%	G /	A A	т	co	c	G	c c	A	С	СТ	СС	A	т	тτ	G	Т	Α -	-	т	G	C C	A	G	СТ	G	G(G A	т	G G	С	ТΤ	Т	c /	۲	G	G C	т	G C	c /	A T	С	A C	C	Т	СТ	G	T G	G	т	ст	A	ст	A	т
-5	0.1%	G /	A A	т	co	c	G	c c	A	С	СТ	СС	A	T.	тτ	G			-	-	G	c c	A	G	СТ	G	G(G A	т	G G	С	ТΤ	Т	c /	۲	G	G C	т	G C	c /	A T	С	A (c	Т	СТ	G	T G	G	т	т	A	ст	A	т
-30	0%	G /	A A	т	co	c	G	cc	- 1	-			-	-			-		-	-	-			-					-		С	ТΤ	гт	C /	۲	G	G C	т	G C	C	A T	С	A (c	т	СТ	G	Т	G	т	СТ	A	ст	^	т
-18	0%	G	A A	т	C C	c	G	c c	A	С	СТ		-	-		-	-		-	-	-			-	- т	G	G	G A	т	GG	С	ТΤ	Т	C /	۲	G	G C	т	G C	c	A T	С	A (c	т	СТ	G	Т	G	т	ст	A	ст	A	т
-7	0%	G	A A	т	C C	c	G	c c	A	С	СТ	СС	A	т			-		-	т	G	c	A	G	ст	G	G	G A	т	GG	С	ТΤ	Т	c /	۲	G	G C	т	G C	c /	A T	С	A C	c	т	СТ	G	T G	G	т	ст	A	ст	Α 1	т
-7	096	G	A A	т	cc	c	G	СС	A	С	СТ	C C	A	т	тτ	G			-	-	-	- 0	A	G	СТ	G	G	G A	т	G G	С	ТΤ	гт	c /	۲	G	G C	т	G C	C /	A T	С	A (c	Т	СТ	G	T G	G	т	ст	A	СТ	Α 1	т

CONCLUSIONS AND FUTURE WORK

Conclusions:

• Design of gRNAs to target areas of *Abcc8* Cloning of gRNAs into Cas9 plasmid •Transfections of β TC 6 with the Cas9 + gRNA plasmid & RNP complex

Future Work:

Optimising the delivery of Cas9/sgRNA system using electroporation

- gRNA-RNP complex
- gRNA plasmid □ Molecular validation of the KO *Abcc8* model
- T7 ENDO assay
- Sanger sequencing

ACKNOWLEDGEMENT

This work is supported by the Medical Research Council grant MR/M023265/1

References

• (1) Nessa A, Rahman SA, Hussain K. Hyperinsulinemic Hypoglycemia – The Molecular Mechanisms. Frontiers in Endocrinology. 2016;7:29. doi:10.3389/fendo.2016.00029. (2) Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature protocols. 2013;8(11):2281-2308. doi:10.1038/nprot.2013.143. (3) Guo D, Liu H, Ruzi A, et al. Modeling Congenital Hyperinsulinism with ABCC8-Deficient Human Embryonic Stem Cells Generated by CRISPR/Cas9. Scientific Reports. 2017;7:3156. doi:10.1038/s41598-017-03349-w. (4) Nessa A, Rahman SA, Hussain K. Molecular mechanisms of congenital hyperinsulinism and prospective therapeutic targets. *Expert Opinion on Orphan Drugs*. 2015;3:8. doi.org/10.1517/21678707.2015.1064819. (5) A.P. Chandrasekaran, M. Song, K.S. Kim, S. Ramakrishna. Different methods of delivering CRISPR/Cas9 into cells. Prog Mol Biol Transl Sci, 159 (2018), pp. 157-176.

