High-sensitivity C-reactive protein is associated with prediabetes and adiposity in Korean youth

So Hyun Shin^a, Yun Jeong Lee^a, Young Ah Lee^a, Jae Hyun Kim^b, Seong Yong Lee^c, Choong Ho Shin^a

^aDepartment of Pediatrics, Seoul National University Childrens' Hospital, Seoul, Korea

^bDepartment of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea

^cDepartment of Pediatrics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seooul, Korea

Introduction

- Obesity is a chronic low-grade inflammatory condition which increases the risk of cardiovascular disease.
- Elevated high-sensitivity C-reactive protein (hs-CRP) levels are associated with cardiovascular disease, type 2 diabetes, and metabolic syndrome in adults.
- This study aimed to determine the association of hs-CRP and cardiometabolic risk factors, including obesity, prediabetes, hypertension, and dyslipidemia, in the nationally representative data of

Figure 1. Association between high sensitivity C-reactive protein (hs-CRP) and body mass index z-score (A), HbA1c (B), high density lipoprotein (HDL) cholesterol (C).

Korean youth.

Methods

- This study was performed using data from the Korea National Health and Nutrition Examination Survey (KNHANES) 2015–2017.
- A total of 1,723 youths (918 boys, 53.5%) aged 10-18 years from the KNHANES(2015-2017) were included.
- Anthropometric, biochemical, physical activity and nutritional survey data were collected. Participants were classified into 3 groups according to hs-CRP tertile.
- Abdominal obesity, impaired fasting glucose, elevated triglyceride, decreased high-density lipoprotein (HDL) cholesterol and elevated blood pressure, and prediabetes (HbA1c 5.7-6.4%) were compared according to sex and hs-CRP tertile.

Results

Table 1. Clinica	I characteristics	of study	participants	by tertiles of	of hs-CRP
------------------	-------------------	----------	--------------	----------------	-----------

Variables	Lower tertile	Mid-tertile	Upper tertile	P-value	P for
	(n = 738, 43.0%)	(n = 448, 27.1%)	(n = 508, 29.9%)		trend
hs-CRP (mg/L) (range), total	0.233 ± 0.004	0.409 ± 0.003 b	1.645 ± 0.081 ^b	<0.001	< 0.00

Table 2. Association between hsCRP tertiles and cardiometabolic risk factors

	Lower versus Mid-tertile		Lower versus Upper tertile		
	OR (95% CI)	P value	OR (95% CI)	P value	
Obesity					
Univariate	4.34 (2.28, 8.27)	< 0.001	17.38 (10.10, 29.92)	< 0.001	
Multivariate (Model 1)	4.34 (2.27, 8.31)	< 0.001	17.58 (10.12, 30.53)	< 0.001	
Multivariate (Model 2)	4.00 (1.82, 8.76)	0.001	12.07 (6.18, 23.57)	< 0.001	
Abdominal obesity					
Univariate	2.94 (1.64, 5.29)	< 0.001	11.59 (7.21, 18.63)	< 0.001	
Multivariate (Model 1)	0.76 (0.33, 1.79)	0.534	1.09 (0.49, 2.44)	0.832	
Multivariate (Model 2)	1.31 (0.41, 4.18)	0.642	1.30 (0.48, 3.54)	0.607	
Impaired fasting glucose					
Univariate	1.03 (0.66, 1.60)	0.890	1.48 (1.02, 2.16)	0.040	
Multivariate (Model 1)	0.92 (0.58, 1.44)	0.710	1.05 (0.67, 1.65)	0.819	
Multivariate (Model 2)	1.10 (0.50, 2.42)	0.820	1.19 (0.58, 2.44)	0.629	
Prediabetes (HbA1c \geq 5.7%)					
Univariate	1.37 (0.90, 2.10)	0.145	2.29 (1.48, 3.56)	< 0.001	
Multivariate (Model 1)	1.36 (0.88, 2.12)	0.166	2.19 (1.35, 3.57)	0.002	
Multivariate (Model 2)	1.60 (0.80, 3.18)	0.182	3.08 (1.49, 6.36)	0.002	
Elevated blood pressure					
Univariate	1.65 (0.85, 3.23)	0.142	3.07 (1.54, 6.17)	0.002	
Multivariate (Model 1)	1.18 (0.58, 2.43)	0.644	1.35 (0.66, 2.76)	0.417	
Multivariate (Model 2)	0.62 (0.21, 1.83)	0.385	1.10 (0.44, 2.76)	0.834	
Elevated triglyceride					
Univariate	1.39 (0.85, 2.27)	0.185	1.85 (1.20, 2.87)	0.006	
Multivariate (Model 1)	1.14 (0.68, 1.90)	0.612	1.07 (0.64, 1.81)	0.786	
Multivariate (Model 2)	0.57 (0.21, 1.53)	0.264	1.01 (0.43, 2.37)	0.981	
Decreased HDL cholesterol					
Univariate	1.68 (1.16, 2.43)	0.007	2.29 (1.63, 2.43)	< 0.001	
Multivariate (Model 1)	1.42 (0.97. 2.09)	0.073	1.48 (0.99, 2.20)	0.054	
Multivariate (Model 2)	1.85 (1.04, 3.29)	0.035	1.58 (0.87, 2.88)	0.135	
Metabolic syndrome					
Univariate	3.40 (1.02, 11.39)	0.047	9.27 (3.42, 25.16)	< 0.001	
Multivariate (Model 1)	1.70 (0.51, 6.58)	0.440	1.70 (0.51, 5.67)	0.384	
Multivariate (Model 2)	1.50 (0.22, 10.18)	0.680	2.83 (0.62, 13.03)	0.181	

	(0.106, 0.30)	(0.31, 0.50)	(0.51, 9.16)		
hs-CRP (mg/L) (range), male	0.234 ± 0.005	0.411 ± 0.004 b	1.664 ± 0.088 b	<0.001	<0.001
	(0.106, 0.30)	(0.31, 0.53)	(0.54, 9.16)		
hs-CRP (mg/L) (range), Female	0.226 ± 0.005	0.376 ± 0.003 ^b	$1.350 \pm 0.105 b$	< 0.001	<0.001
	(0.106, 0.30)	(0.31, 0.42)	(0.43, 8.86)		
Age (yr)	14.2 ± 0.1	14.6 ± 0.1	14.7 ± 0.1 b	0.021	0.012
Sex, male (%)	359 (48.7%)	240 (54.0%)	309 (61.2%)	<0.001	0.007
BMI z-score	-0.49 ± 0.04	$0.03 \pm 0.07 \text{ b}$	$0.82 \pm 0.07 ^{b}$	< 0.001	<0.001
Waist circumference (cm)	67.2 ± 0.4	70.9 ± 0.4 ^b	77.4 ± 0.6 ^b	<0.001	<0.001
Obesity, n (%)	18 (2.3%)	41 (9.4%)	143 (29.2%)	<0.001	<0.001
Systolic BP (mm Hg)	107.3 ± 0.4	108.7 ± 0.5 ^a	110.4 ± 0.6 ^b	< 0.001	<0.001
Diastolic BP (mm Hg)	66.2 ± 0.4	66.5 ± 0.4	67.4 ± 0.4	0.062	0.004
Fasting glucose (mg/dL)	91.1 ± 0.3	91.1 ± 0.3	92.3 ± 0.3 b	0.009	0.006
HbA1c (%)	5.30 ± 0.01	5.33 ± 0.01 ^a	5.38 ± 0.01 ^b	< 0.001	<0.001
Insulin (mIU/L)	10.2 ± 0.4	10.9 ± 0.6	12.3 ± 0.6 b	0.012	0.004
HOMA-IR	2.30 ± 0.10	2.43 ± 0.15	2.79 ± 0.14 ^b	0.009	0.004
Total cholesterol (mg/dL)	162.0 ± 1.1	159.3 ± 1.4	163.3 ± 1.3	0.090	0.581
Triglyceride (mg/dL)	72.4 ± 1.5	76.1 ± 2.2	79.8 ± 1.9 b	0.004	0.007
HDL cholesterol (mg/dL)	52.9 ± 0.4	49.6 ± 0.5 b	48.7 ± 0.5 ^b	< 0.001	<0.001
Alanine aminotransferase (U/L)	13.1 ± 0.4	14.3 ± 0.5	21.2 ± 1.6 ^b	< 0.001	<0.001
White blood cell count (/µL)	6182 ± 59	6550 ± 67 ^b	6743 ± 78 ^b	<0.001	<0.001
Moderate-to-vigorous	23.0 ± 2.5	24.9 ± 3.3	24.3 ± 3.1	0.880	0.687
physical activity (min/day)					
Moderate-to-vigorous physical activ	40 (8.2%)	29 (13.9%)	33 (13.8%)	0.067	0.034
ity (≥ 30 min/day), n (%)					
Sedentary time (hour/day)	11.1 ± 0.1	11.1 ± 0.2	11.1 ± 0.2	0.941	0.738
Total energy intake (Kcal/day)	2112 ± 38	2180 ± 51	2158 ± 44	0.515	0.387
Protein intake (g/day)	76.3 ± 1.8	81.9 ± 2.6	79.2 ± 2.0	0.163	0.174
Fat intake (g/day)	59.3 ± 1.7	63.7 ± 2.1	62.7 ± 1.9	0.187	0.134
Carbohydrate intake (g/day)	316.2 ± 5.3	319.4 ± 8.1	316.6 ± 7.6	0.939	0.934
Total energy intake	144 (21.0%)	86 (20.5%)	99 (22.1%)	0.870	0.712
(≥ 120% of estimated average requi					
rements for age and sex), n (%)					
Abdominal obesity, n (%)	25 (3.3%)	39 (9.0%)	140 (28.1%)	< 0.001	< 0.001
Impaired fasting glucose, n (%)	74 (9.5%)	46 (9.8%)	73 (13.5%)	0.093	0.049
HbA1c ≥ 5.7%, n (%)	49 (6.6%)	45 (8.8%)	70 (13.9%)	< 0.001	< 0.001
Elevated blood pressure, n (%)	16 (2.0%)	16 (3.3%)	30 (6.0%)	0.002	0.002
Elevated triglyceride, n (%)	46 (6.1%)	39 (8.3%)	56 (10.8%)	0.019	0.005
Low HDL cholesterol, n (%)	73 (10.8%)	75 (16.9%)	110 (21.8%)	< 0.001	< 0.001
Metabolic syndrome, n (%)	5 (0.6%)	7 (2.0%)	28 (5.4%)	< 0.001	< 0.001

Model 1 adjusted for age, sex, and BMI except for BMI z-score (adjusted for age and sex) Model 2 adjusted for age, sex, BMI, white blood cell count, moderate-to-vigorous physical activity, and daily caloric intake except for BMI z-score (adjusted for age and sex, white blood cell count, moderate-to-vigorous physical activity, and daily caloric intake).

BMI z-score ($\beta = 0.60$, P < 0.001), HbA1c ($\beta = 0.036$, P = 0.012), and

 The higher hs-CRP tertile were associated with higher BMI z-scores, WC, obesity, systolic BP, fasting glucose, HbA1c, insulin levels, HOMA-IR, triglyceride level, ALT levels, and WBC counts. Moreover, the proportions of subjects with abdominal obesity, prediabetes, elevated BP, elevated triglyceride, low HDL cholesterol, and metabolic syndrome progressively increased in the higher tertile.(Table 1) HDL cholesterol ($\beta = -0.025$, P = 0.029) were significantly associated with hs-CRP.

- Obesity (OR 2.47, 95% CI 1.93–3.17) and prediabetes (OR 1.67, 95% CI 1.25–2.22) were significantly associated with hs-CRP.
- The upper tertile of hs-CRP showed significant association with obesity (OR = 12.07, P < 0.001) and prediabetes (OR = 3.08, P = 0.002). (Table 2)
- The proportion of participants with cardiometabolic risk factors was higher according to increasing hs-CRP tertile (P < 0.001) (Fig. 2.).

Conclusion

• Elevated hs-CRP is associated with high BMI z-score and HbA1c, and low HDL cholesterol in Korean children and adolescents. Hence, hs-CRP could be a reliable indicator for adiposity, prediabetes, and abnormal lipid metabolism in the pediatric population

