UNI FR **UNIVERSITÉ DE FRIBOURG**

UNIVERSITÄT FREIBURG

WES analysis of a cohort of 94 patients presenting with 46,XY and 46,XX DSD

P. Sproll, B. Stevenson, S. Nef & A. Biason-Lauber

[†]Division of Endocrinology, Section of Medicine, University of Fribourg, Switzerland Swiss Institute of Bioinformatics, Faculty of Biology and Medicine, University of Lausanne, Switzerland Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Switzerland

Introduction

Differences of Sex Development (DSD) are diagnosed in approximately one out of 4'500 newborns. Currently, due to the lack of knowledge on the complete gene and protein pathways involved in sex development and DSD, causative genetic variants can only be identified in about 50% of the affected patients. We used whole exome sequencing (WES) on a group of 94 Patients presenting with 46,XY and 46,XX DSD, in order to identify causative variants and potential new DSD genes.

Methods

A. Current data

71 patients

23 patients

B. Identification of potential new DSD candidate genes

1×10⁵

st 1×10⁴

1×10³

1×10

diagnosed with 46,XY DSD diagnosed with 46,XX DSD

Whole Exome Sequencing (WES)

B. Variants in genes related to DSD

ADAMTS16	C2ORF80	CYP26B1	ESR2	FMR1	HOXA4	LEPR	MKS1	PBX1	SETBP1	TACR3
AKAP2	CBX2	DAX1	ESPN	FOG2	HOXA13	LGR5	MSH5	PIP5K1B	SMOC2	TBX15
AKR1C1	CDKN1C	DHCR24	ETV4	FOXL2	НОХВ6	LGR8	MYBL1	POLR3A	SOX2	тстиз
AKR1C2	CEP41	DHCR7	FAM58A	FRAS1	HOXD	LHB	NLGN4X	POR	SOX3	TDRD7
AKR1C4	CHD7	DHH	FAM189A2	FREM2	HS6ST1	LHCGR	NEK1	PRKACG	SOX8	TOX2
АМН	CNGA1	DIAPH2	FAT4	FSHR	HSD17B1	LHFPL5	NELF	PROK2	SOX9	TSPYL
AMHR2	CTNNB1	DMRT1	FBLN2	FSHβ	HSD17B3	LHX1	NIPAL1	PROKR2	SOX10	TSPYL1
AR	CREBBP	DNMT3B	FEZF1	GATA4	HSD17B4	LHX3	NKD2	PROP1	SPECC1L	TUBB3
ARX	CUL4B	DUSP6	FGF8	GNRH1	HSD3B2	LHX4	NLGN4X	PSMC3IP	SPRY4	UBR1
ATF3	CYB5	DUSP15	FGF9	GnRHR	ІСК	LHX9	NMT2	РТК2В	SRD5A1	WDR11
ATRX	CYB5A	DYNC2H1	FGF17	GPR54	IL17RD	LHβ	NOBOX	PTPN11	SRD5A2	WDR60
B3GALTL	CYP11A1	EAP1	FGFR1	GRIP1	INSL3	LMNA	NR5A1	RIPK4	SRY	WNT4
BCOR	CYP11B1	EMX1	FGFR2	HCCS	IRF6	MAMLD1	NR5A2	ROR2	STAG3	WNT7A
BMP4	CYP17A1	EMX2	FIGLA	HDAC8	KAL1	MAP3K1	NR0B1	RSPO1	STAR	WT1
BMP7	CYP19A1	ERCC6	FIG4	HESX1	KISS1	MCM8	NSMF	SALL1	SUPT3H	wwox
BMP15	CYP1B2	ESCO2	FKBP4	HFM1	KISS1R	MID1	OPHN1	SCARF2	SYCE1	ZFPM2
BNC2	CYP21A2	ESR1	FLRT3	HHAT	LEP	MKKS	PAX2	SEMA3A	TAC3	DHX37

I. Filtering of variants

II. Comparison between patients

III. Discover potential DSD candidates

PCLO	20	May act					
AXDND1	20	Experim		UKR15 P1	UKR15 P2		
HRC	20		UKR50				
FRG1B	20	FRG1BP		UKR15 P1	UKR15 P2	IGC44	
CDH23	19	Cadherii		UKR15 P1	UKR15 P2		
HMCN1	19	Promote					
ESPNL	19	Experim	UKR50	UKR15 P1	UKR15 P2	IGC44	
LAMA5	19	Binding					
AHNAK	19	May be i					
CROCC	19	Contribu		UKR15 P1	UKR15 P2	IGC44	
AR	19				UKR15 P2		
ABCA13	19	ATP-bin			UKR15 P2		
TRIOBP	19	May reg					
ZFHX3	19	Transcri				IGC44	UKR1
PCSK5	19	Serine e	UKR50				UKR1
HELZ2	19	Helicase					UKR1
TBC1D3G	19	Experim					
PIEZO1	19	Pore-for	UKR50				UKR1
NCOR2	19	Transcri	UKR50				
CNTNAP3B	19	Experim		UKR15 P1			
OTOG	19	Glycopro					
RP11-293B20.2	18		UKR50	UKR15 P1	UKR15 P2	IGC44	UKR1
FTSJ3	18	Probable	UKR50	UKR15 P1	UKR15 P2	IGC44	UKR1
FAM136A	18	Experim	UKR50	UKR15 P1			
EAM221D	10	Drotoin					

8505 affected genes common between at least two patients

 \sim

Expression pattern

Known functions

Involvement in sex

Table modified from Baetens, D. et al

Rare (MAF < 0.5%) variants in known DSD genes

Diagnosis	# Patients	Genes
46,XX DSD	12 / 23	CYP19A1, HSD17B4, CYP21A2, STAR, CYP17A1
46,XY DSD	21 / 71	AR, SF1, SOX9, STAR, CBX2, DAX1, CYP17A1, HS6ST1
Unknov functior	In variants nal analysis	Known variants no further action

Conclusions

WES is a powerful tool for diagnostics that allowed us to identify potential causative variants in 21 of 71 46,XY DSD and in 12 of 23 46,XX DSD patients. The diagnosis of patients with already known variants can directly be confirmed, while unknown variants first need to be further analyzed. Comparison of all rare variants shared between patients and further filtering steps led to the identification of the five new potential DSD genes: AKAP13, CCDC88C, NPAP1, NWD1 and PDZD2. Further experiments in vivo (mouse/fly) and/or in vitro (appropriate human cell models) are needed to confirm their influence in sex development and its differences.

References:

- Baetens, D., et al. NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorder of sex development. Genet Med, 2017
- 2. Bult, C.J., et al. Mouse Genome Database (MGD) 2019. Nucleic Acids Res 2019
- 3. Oshita, A., et al. Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells, 2003
- 4. Neumann, L.C., et al. The imprinted NAPA1 Gene in the Prader-Willi Syndrome Region Belongs to a POM121-Related Family of Retrogenes. Genome Biol Evol, 2014
- 5. Correa, R.G., et al. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling. Oncotarget, 2014
- 6. Thomas, M.K., et al. The Roles of the PDZ-containing Proteins Bridge 1 and PDZD2 in the Regulation of Insulin Production and Pancreatic Beta-Cell Mass. Curr Protein Pept Sci, 2009

P1-412

V. Selection of

potential candidates

Sex differentiation, gonads and gynaecology or sex endocrinology

Patrick Sproll