Characterizing the Steroidal Milieu in Amniotic Fluid of Mid-Gestation: JUSTUS-LIEBIG- a GC-MS Study

R. Wang^a, M. F. Hartmann^a, D. Tiosano^b, S. A. Wudy^a

^a Steroid Research & Mass Spectrometry Unit; Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine; Justus-Liebig-University, Giessen, Germany

^b Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel

Introduction

- Growth and development of an embryo or fetus depend on steroid hormone biosynthesis and metabolism in the feto-placental unit [1]. The human adrenal anlage differentiates into two distinct zones by the eighth week of gestation: the inner large fetal/transient zone and the outer small adult/permanent zone [2].
- The transitional zone of the fetal adrenal is believed to be the site of fetal de novo

- 52 steroid hormone metabolites in AF of mid-gestation were delineated by a targeted GC-MS approach.
- Pregnenolone and 17-OH-pregnenolone metabolites, DHEA and metabolites, progesterone and 17-OH-progesterone metabolites, androgens, estrogens as well as cortisone and cortisol metabolites were characterized in AF of mid-gestation.

cortisol production from the second half of gestation onwards [3].

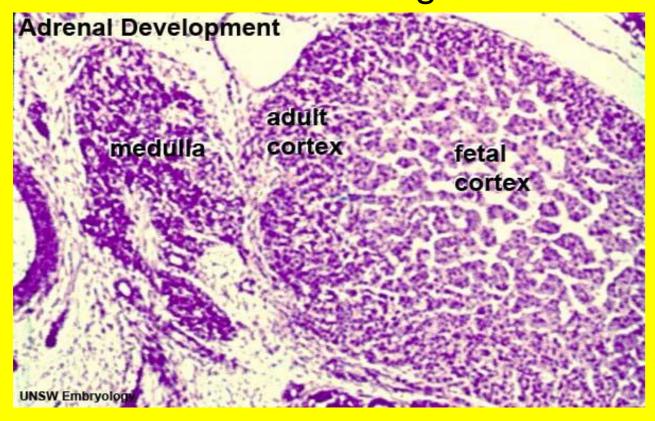
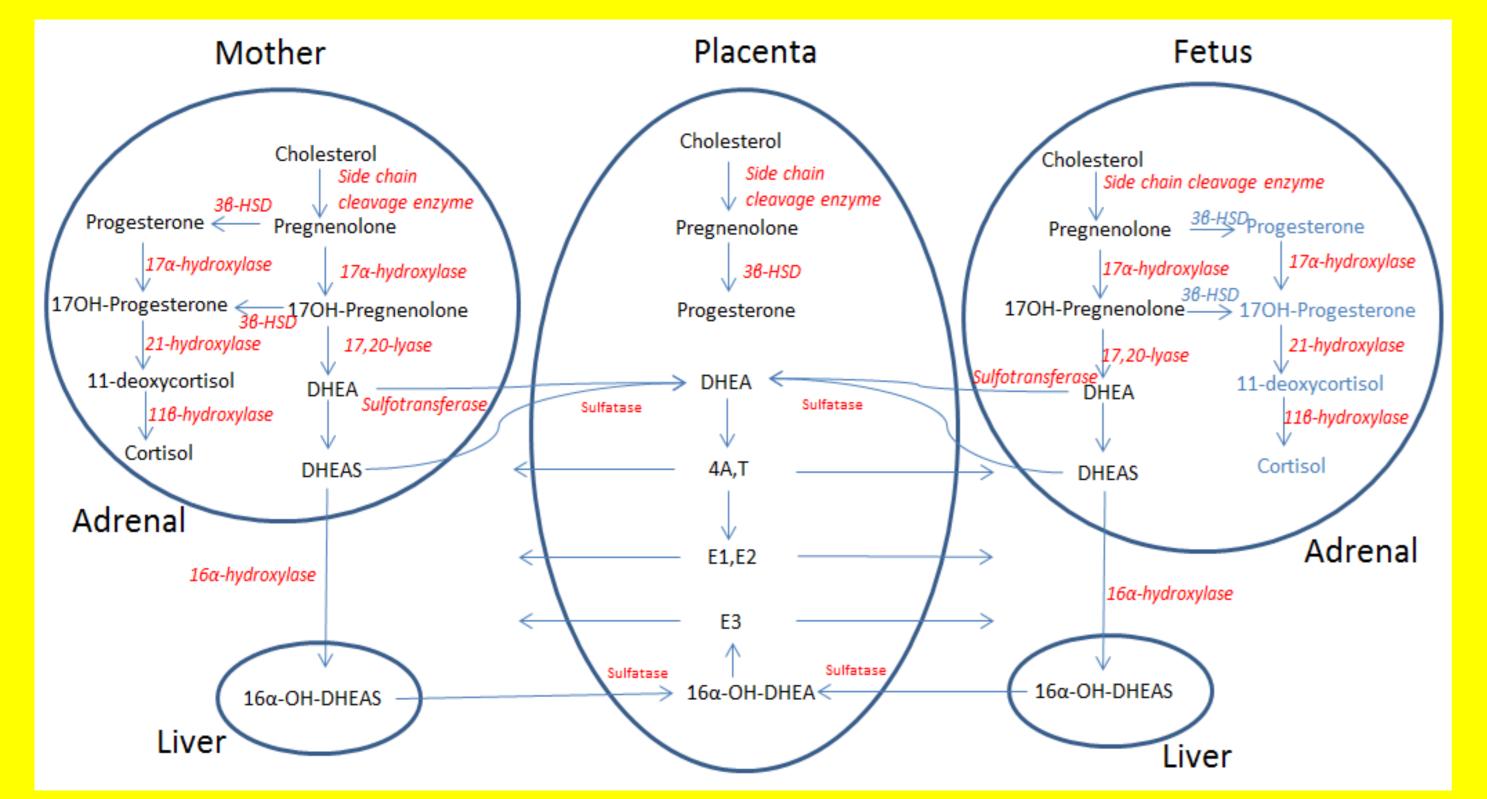



Figure 1. fetal adrenal gland [4]

Fetal zone steroids refer to those steroids which are only present in fetuses and newborns stemming from the fetal zone of the fetal adrenal, bearing a "3β-hydroxy-5-ene" structure.

- Reference data of levels of 52 steroids in AF of mid-gestation were provided in the present study. These reflected that all important classes of steroids are present in AF of mid-gestation.
- This set of basic data might lay the foundation for further studies characterizing various diseases affecting steroid metabolism.

Results

Table 1. Concentrations of selected steroids

Steroids		Concentrations (ng/mL) Mean±SD Median (Min-Max)
Pregnenolone and 17-OH-pregnenolone metabolites (Δ5 unsaturated C ₂₁ steroids)		
Σ Pregnenolone and 17-OH-pregnenolone metabolites	138.0±5	9.3 0.6-339.7)
21-OH-P5olon	43.9±24.0 41.9 (0.0-123.5)	
16α-OH-P5olon	17.3±7.1 15.7 (9.1-50.8)	
P5-3β,20α,21-triol	45.3±23.2 41.5 (7.8-123.7)	
15β,17α-OH-P5olon	15.7±10 14.0 (3.0	
P5-tetrol-15β	13.8±9.9 11.2 (3.3-55.8)	
DHEA and metabolites (Δ5 unsaturated C ₁₉ steroids)		
Σ DHEA and metabolites	97.1±56 83.6 (38	.5 .6-361.5)
DHEA	7.7±6.2 6.1 (3.1-	50.6)
16α-OH-DHEA	42.4±21 37.2 (16	.8 .3-133.4)
16β-ΟΗ-DHEA	32.9±30 24.2 (7.4	
Progesterone and 17-OH	l-progest	erone metabolites
Σ Progesterone and 17-		
OH-progesterone metabolites	107.3±4 101.6 (4	4.3 3.0-299.3)
Pregnanediol	91.6±41.0 86.8 (33.9-279.9)	
Pregnanetriol	9.0±5.3 7.4 (3.7-	33.0)
Other androgens (saturated C ₁₉ steroids)		
Androsterone	4.6±2.1 4.4 (0.0-12.1)	
Etiocholanolone	3.6±4.6 2.8 (1.2-38.9)	
Testosterone	Male:1.5 1.5 (0.9-	
Estrogens (C ₁₈ steroids)		
E3	33.2±26.1 25.5 (10.8-188.0)	
Cortisol (F) and cortiso	ne (E) me	etabolites (C ₂₁ steroids)
(Σ F+Σ E) metabolites	59.6±13 60.2 (14	.6 .8-103.8)
Σ F and metabolites	24.1±5.2 24.0 (3.0	
Cortisol (F)	8.4±2.3 8.5 (0.0-16.1)	
THF	4.4±1.6 4.0 (0.9-8.2)	
α-THF	4.0±1.9 4.0 (0.0-10.1)	
 ТЦС	18.0±4.2	

The concentrations of 52 steroid hormone metabolites which included pregnenolone and 17-OH-pregnenolone metabolites, DHEA and metabolites, progesterone and 17-OHprogesterone metabolites, androgens, estrogens, corticosterone metabolites, 11-deoxycortisol metabolites, as well as cortisol and cortisone metabolites were analyzed. Selected steroids are shown in Table 1.

The dominating steroids were the group of pregnenolone and 17-OH-pregnenolone metabolites, followed by progesterone and 17-OH-progesterone metabolites, and DHEA and its metabolites.

Figure 2. Steroid metabolism and enzyme activities of the feto-placental unit

Aim:

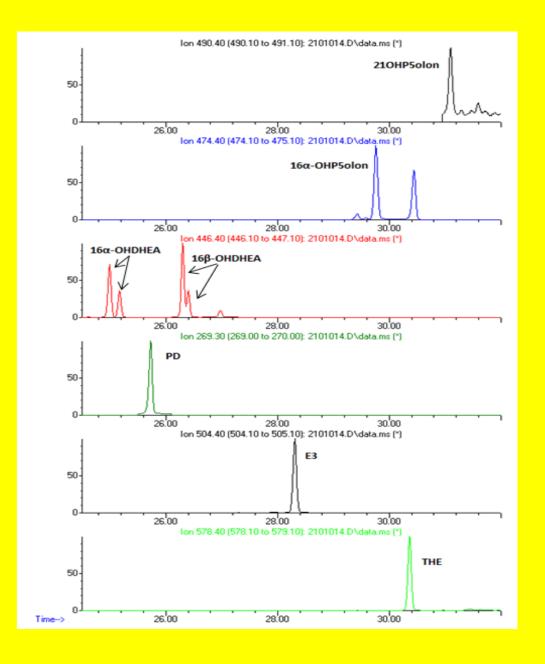
To complement our findings of the LC-MS/MS study [5], we now used GC-MS to delineate further steroid hormone metabolites in AF of mid-gestation by a comprehensive targeted steroid hormone metabolomics analysis approach.

Method

Subjects:

65 pregnant women who underwent amniocentesis agreed to participate in the study. The gestational age of the fetuses was 18.8 ± 1.8 (Mean \pm SD) weeks. The mother's age was 35.6 ± 4.3 (Mean \pm SD) years.

Sample analysis:


Free and conjugated urinary steroids were extracted by solid phase extraction, enzymatically hydrolyzed and after recovery of hydrolyzed steroids, methyloximetrimethylsilyl ethers were formed. GC was performed using an Optima-1 fused silica column (Macherey-Nagel, Düren, Germany) housed in an Agilent Technologies 6890 series GC that was directly interfaced to an Agilent Technologies 5975 inert XL mass selective detector.

18.0±4.2 17.0 (10.1-34.1)

THE

Most steroid hormone metabolites did not show any sex dimorphism. Most expressed sex differences were only found for testosterone (P<0.0001) with higher values in males, respectively.

Cortisol metabolites are clearly present in our AF samples of mid-gestation before the start of de novo cortisol synthesis.

References

[1] S.A. Wudy, H.G. DÖrr, C. Solleder, M. Djalali, J. Homoki, Profiling steroid hormones in amniotic fluid of midpregnancy by GC-MS, J. Clin. Endocrinol. Metab. 84 (1999) 2724-8.
[2] H. Ishimoto, R.B. Jaffe, Development and Function of the Human Fetal Adrenal Cortex : A Key Component in the Feto-Placental Unit, 32 (2011) 317–355. doi:10.1210/er.2010-0001.
[3] W.E. Rainey, K.S. Rehman, B.R. Carr, The human fetal adrenal: Making adrenal androgens for placental estrogens, Semin. Reprod. Med. 22 (2004) 327–336. doi:10.1055/s-2004-861549.

[4] https://embryology.med.unsw.edu.au/embryology/index.php/Endocrine_-_Adrenal _Development

[5] R. Wang, D. Tiosano, M.F. Hartmann, S.A. Wudy, Characterizing the steroidal milieu in amniotic fluid of mid-gestation: A LC–MS/MS study, J. Steroid Biochem. Mol. Biol. 185 (2019) 47-56. doi:https://doi.org/10.1016/j.jsbmb.2018.07.007.

Figure 3. SIM chromatograms of important steroids

Discussion

- The comparable concentrations of 16β -OH-DHEA with 16α -OH-DHEA in AF suggest that 16β -hydroxylase is also active in the feto-placental unit.
- We speculate that 16α-OH-P5olon is the main precursor of 16α-OH-DHEA and 16β-OH-DHEA based on the strong correlation study (r=0.83,P<0.0001; r=0.76,P<0.0001).
- We found cortisol metabolites to be clearly present in our AF samples of midgestation. A possible explanation for a source of cortisol in AF of mid-gestation could be the maternal transfer of cortisol across the placenta. Another reason could be placental progesterone acting as a precursor of cortisol production in the fetus.
- We found the concentrations of cortisone metabolites to be clearly higher than those of cortisol metabolites in our study. This points to a preference of cortisol inactivation by the feto-placental unit.

Poster presented at:

