

Queenslan

Governme

Congenital Hyperinsulinism due to pancreatic mosaicism for paternal uniparental disomy (pUPD) of all chromosome 11, with the additional finding of pancreatic mosaicism for trisomy 12.

Louise S Conwell^{1,2}, James R Harraway³, Mark G Williams³, Christopher Joy³, Bonnie M Scurry⁴, Kevin Lee^{2,5}, Craig McBride^{2,6}, Tony Huynh^{1,2,7}, Carolyn GL Ng⁷, Sarah E Flanagan. ¹ Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Australia ² School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, Australia ³ Molecular Pathology Department, Mater Health, Brisbane, Queensland, Australia ⁴ Anatomical Pathology, Pathology Queensland, Queensland Children's Hospital, Brisbane, Australia ⁵ Department of Nuclear Medicine and Queensland PET Service, Royal Brisbane and Women's Hospital, Queensland, Australia ⁶ Department of Paediatric Surgery, Queensland Children's Hospital, Children's Hospital, Brisbane, Australia ⁷ Chemical Pathology Department, Mater Health, Brisbane, Australia ⁸ Department of Paediatrics, Bundaberg Hospital, Brisbane, Queensland, Australia ⁹ Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom

Beckwith-Wiedemann

Methods

- A term male (birthweight 3.7kg, 80th percentile) with diazoxide-unresponsive congenital hyperinsulinism (CHI) was born to unaffected parents
 - natural conception
 - non-consanguineous and no family history
- He did <u>not</u> have the *cardinal* Beckwith-Wiedemann spectrum¹ features of
 - macroglossia, exomphalos or lateralised overgrowth
- He did <u>not</u> have the *suggestive* Beckwith-Wiedemann spectrum¹ features of
 - polyhydramnios, macrosomia
 - facial naevus simplex, ear creases or pits
 - umbilical hernia, diastasis recti
 - nephromegaly or hepatomegaly
- Placenta was not retained to assess for size or mesenchymal dysplasia¹
- A targeted massively parallel sequencing (MPS) panel identified a heterozygous maternally inherited K_{ATP} channel ABCC8 variant (c.1332+4del) - minimal splicing effect predicted
 - classified as likely benign
- Intensive medical support was required and he

syndrome (BWS)

- A multisystem human genomic imprinting disorder with variable clinical expression and complex molecular aetiology¹
- An international consensus statement has introduced the concept of

Beckwith-Wiedemann spectrum (BWSp)¹

∢	BWSp	
Isolated lateralized overgrowth	Atypical BWS	BWS
Other genetic causes	11p15 imprinted region dysregulation	Clinical BWS diagnosis

- Hyperinsulinaemic hypoglycaemia is common (30-60%) and usually resolves within a few days
 - persistent, severe cases refractory to medical management are usually associated with the paternal uniparental disomy (pUPD11) molecular defect
 - majority do not have a paternal inactivating K_{ATP} channel variant but those that do have even more refractory hypoglycaemia

Figure 1

- Pancreas (region of islet hyperplasia)
- Targeted MPS hyperinsulinism panel with mosaic variant calling programme on the sequence data (detects variants to level of 1%)
 - KCNJ11, ABCC8, AKT2, GLUD1, GCK, GPC3, HADH, HNF4A, INSR, KDM6A, KMT2D, SLC16A1, CACNA1D, PMM2, TRMT10A, HNF1A
- Single-nucleotide polymorphisms (SNP) array analysis (Affymetrix Cytoscan 750K)
- **2.** Peripheral blood and buccal cells
 - **SNP** array analysis

Results

1. Pancreas

- **Targeted MPS hyperinsulinism panel**
- maternal ABCC8 variant that was identified in blood was again detected, but only in a small number of reads with skewed allelic frequency \rightarrow suggesting mosaicism
- SNP array analysis ii.
 - mosaic loss of heterozygosity (LOH) was observed for chromosome 11

could not be medically maintained with a trial of continuous subcutaneous octreotide

- [18F]-DOPA PET/CT imaging of the pancreas
 - unexpected finding of focal increased uptake in the pancreatic distal body/tail junction (Figure 1A)
- Histopathology of the subtotal pancreatectomy (day 22) showed (Figure 2)
 - focal adenomatous hyperplasia
 - trabeculae and islet nests composed of
 - regular, oval or columnar cells
 - Iacking atypia or conspicuous nuclear enlargement
 - adjacent lobules had a relatively normal distribution of islets and exocrine acini
 - Chromogranin highlighted the islets
 - aberrant p57 expression in islet cytoplasm
 - nuclear in normal islets and in diffuse hyperinsulinism
 - would be negative in focal CHI due to a pathogenic paternal K_{ATP} channel variant
- Within 2 weeks, medical support was again required with residual, increased [18F]-DOPA pancreatic uptake (Figure 1B)
- A second resection (5% left in-situ) (day 36) achieved normoglycaemia At 24 months of age normoglycaemic with age-appropriate feeding (exocrine pancreatic supplements) normal ultrasonographic appearance of liver and kidneys normal neurodevelopmental progress

A. Focal moderate-intense [18F]-DOPA uptake at the pancreatic body/tail junction (arrows), consistent with site of hypermetabolic tissue, with a faint focus of [18F]-DOPA uptake at the uncinate process which is more likely physiologic

B. Focal moderate-intense [18F]-DOPA uptake at the subtotal pancreatectomy resection margin (arrows), suggesting that significant residual hypermetabolic tissue had not been resected Figure 2

- observed pattern suggested high-level mosaicism for a cell line with wholechromosome isodisomic UPD for chromosome 11, as well as a normal biparental cell line
- Trio analysis suggested the UPD to be paternal in origin (isodisomic UPD11 pat)
- a mosaic gain of one copy of chromosome 12 was also detected, consistent with mosaic trisomy 12 (mosaicism level 50%)
- **2.** Peripheral blood and buccal cells
 - SNP array analysis
 - no mosaic paternal uniparental disomy (pUPD) or trisomy 12 identified (cannot exclude low-level mosaicism of <10%)

Conclusions

Pancreatic mosaicism for pUPD11

- Most likely cause of CHI
- With 2 cardinal BWSp features
 - hyperinsulinism >1 week duration, escalating treatment and pancreatic adenomatosis the BWS clinical diagnosis is met¹
- In BWSp, pUPD11 predicts a high risk for Wilms

Objectives

- Extended genetic analyses in the context of
 - **Congenital Hyperinsulinism**

Louise Conwell

- focal increased [18F]-DOPA PET/CT pancreatic uptake and
- atypical histology

Presented at the Annual European Society of Paediatric Endocrinology Meeting, Vienna, Austria, September 2019. A/Prof Louise S. Conwell, Louise.Conwell@health.qld.gov.au

- A. Focal adenomatous hyperplasia (arrow), normal pancreas (*) H&E,10x
- **B.** Islet hyperplasia, H&E, 20x
- **C.** Chromogranin expression in hyperplastic islets (arrow), normal islets (*), 4x
- **D.** p57 expressed in hyperplastic islets (arrow) and normal islets (*), 4x References
 - 1. Brioude F et al. Nat Rev Endocrinol, 2018; 14(4):229-249
 - 2. Kalish JM et al. Clin Cancer Res 2017; 23(13):e115-e122
 - 3. Flanagan SE et al. Front Endocrinol, 2011 Nov 2;2:66
 - 4. Kalish JM et al. J Med Genet, 2016; 53(1):53-61

5. Hong B et al. Am J Med Genet A, 2017; 173(6):1681-1686

- tumour and hepatoblastoma, with 3-monthly ultrasound recommended for 7 years¹
- α -fetoprotein screening is debated^{1,2}
- Even in the absence of overt 11p overgrowth features, BWSp due to pUPD11 should be considered if
 - persistent, severe CHI without an identified pathogenic K_{ATP}-channel mutation(s)
 - large focal pancreatic lesions (with/without a K_{ATP} mutation) or
 - atypical histology^{3,4}

Pancreatic mosaicism for trisomy 12

- Unreported previously \rightarrow significance unknown
- Embryonic lethal when not in mosaic form
- A patient with trisomy 12 in 25% of peripheral blood cells has been reported
 - mild dysmorphic features at birth
- normal development at 6 months of age⁵

Poster presented at:

